
SENSOR SOLUTIONS

Designed for Applications In:

Quality Assurance & Reliability Commitment

The MPS Quality Assurance organization develops, coordinates, and champions strategic quality initiatives throughout MPS Inc., its foundries, and subcontractors. Its mission is to enable MPS to design, develop, manufacture, and deliver products to our customers with world-class quality and reliability that meet and exceed our customers' expectations.

MPS and Its Supplier Quality Systems and Certificates:

- IS09001:2008 (MPS)
- EU RoHS/HF/REACH Compliant (MPS)
- Sony Green Partner (MPS & Suppliers)
- TS16949 (Suppliers)
- ISO14001 (Suppliers)

Product Quality:

- Automotive Products Qualified per AEC-Q100 Standard
- Standard Products Qualified per JEDEC and Military Standards
- Reliability Failure Rate <10FIT
- Product Quality Level < 1.0ppm

Quality Control and Monitoring:

- On-Site Foundry and Assembly Teams for Real-Time Actions
- Quarterly Supplier Quality Review and Annual Supplier Audit
- Short-Term Reliability Monitor Test Daily
- Long-Term Reliability Monitor Test Monthly
- Real-Time Engineering Actions on Monitor Failure
- Quarterly Reliability Monitor Reports

In This Guide

Product Overview	
MagAlpha™ and MagDiff™ Contactless Magnetic Angle Sensors	4
Current Sensors	5
Automotive	
Sensors for Motor Position/Speed Control and Current Sensors	6
Body Electronics	8
Power Management	8
Thermal Management	8
Interior Cabin Control and Car Audio	9
Electronic Power Steering (EPS)	9
Automotive Product Selector Guide	10
Industrial Building & Factory Automation	
Safety & Security	12
Power Management	12
Solar Inverters	13
Climate & Energy Efficiency	14
Industrial Automation	15
Medical Technology	
Lab Automation	16
Surgical Robotics	17
Insulin Pump	18
Consumer Products	
Mobile Phones, Laptops, and VR Headsets	19
Kitchen Appliances/Mixers with Cooking Options	20
E-Bikes & Scooters	21
Consumer & Industrial Product Selector Guide	
Integrated Current Sensors	22
MagVector™ 3D Magnetic Position Sensors	23
MagDiff™ Magnetic Position Sensors with Stray Field Immunity	23
MagAlpha™ Magnetic Position Sensors	23
Position Sensor Magnets	25
Contact & Ordering	
About Monolithic Power Systems	26
Contact & Ordering	27

MagAlpha[™], MagDiff[™], and MagVector[™] Contactless Magnetic Angle Sensors

Advantages of MagAlpha™ & MagDiff™ Sensors:

- » Instantaneous, Absolute Angle Sensing
- » High Resolution
- » Factory-Calibrated Low Error (INL): <0.6°</p>
- » Less than 0.1° Error (INL) with In-System Calibration
- » High Bandwidth Up to 21kHz
- » Robust against Parasitic Stray Fields Exceeding 4kA/m DC
- » Ideal for Battery-Powered Applications: 25µA Average Current
- » Smallest Footprint: WLCSP (1.6mmx1.6mm) and UTQFN (2mmx2mm)
- » Flexible Sensor Location: End-of-Shaft (On-Axis) or Side-Shaft (Off-Axis)

MagAlphaTM and MagDiffTM sensors utilize an array of Hall plates that are sampled successively at very high speeds in such a way that the signal phase represents the angle to be measured. The "phase-to-digital" SpinAxisTM technique captures the angle instantaneously every 1µs without the need for traditional analog-to-digital conversion or arc tangent calculation. This means that the sensor is able to operate across a wider magnetic field range (typically 30mT to 150mT), giving greater flexibility and tolerance for magnet positioning.

The MPS MagDiff[™] family is ideal for applications that require stray-field immunity, such as motor control with other motors in close proximity. The angle is extracted from the difference of the magnetic field at several locations on the sensor IC. This differential method eliminates the contribution of parasitic magnetic fields, and is suitable for sensors positioned at the end-of-shaft with a simple target magnet.

Side-Shaft Capability

MagAlpha™ sensors support both end-of-shaft and side-of-shaft topologies. At end-of-shaft, the sensor is placed directly below the magnet connected to the rotating shaft. This topology offers the best performance, but is not always mechanically convenient because the end of a rotating shaft may not be accessible. For example, in a motor, it may be hidden by the shaft bearing, or driving into a gearbox. (see **Figure 1**).

The MagVectorTM is our third type of magnetic position sensor. It is different than the MagAlphaTM or MagDiffTM in that it detects the direction and strength of a 3-dimensional (Bx, By, Bz) magnetic field and provides the digitized component data to the MCU via an SPI or I^2C interface. Common applications for 3D sensing include power-meter tamper protection, joysticks, and gaming applications.

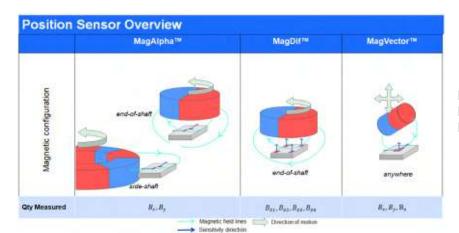
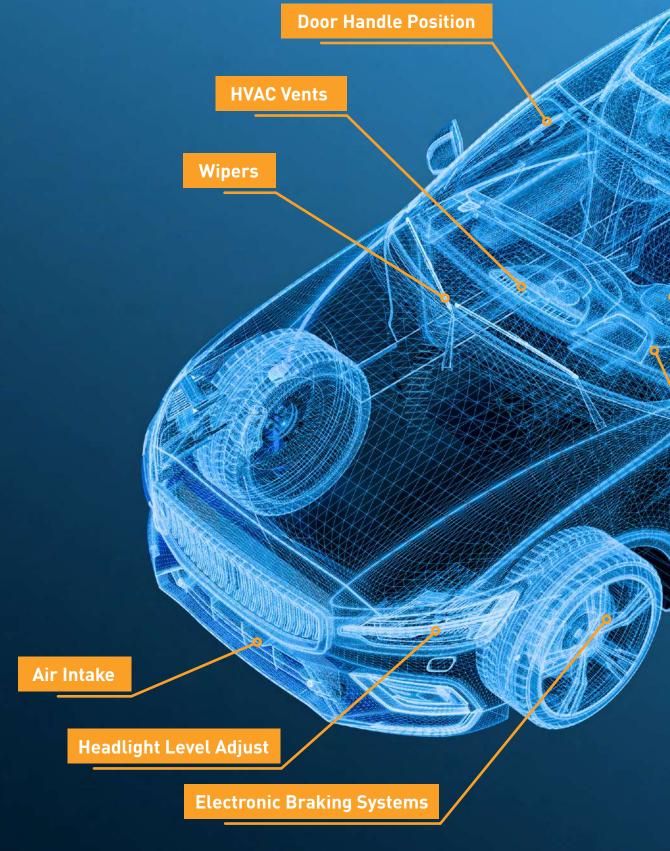
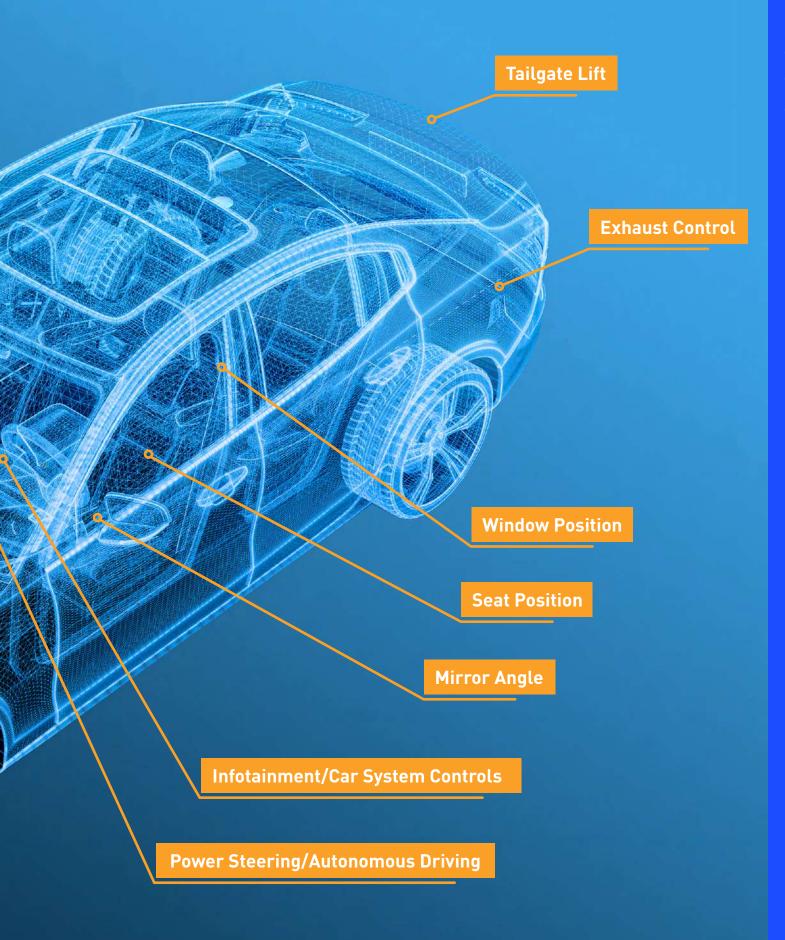


Figure 1: Magnet and Sensor Positioning

Current Sensors

Advantages of MPS Current Sensors:


- » Complete Isolated Current Sensors in SOIC-8 or WSOIC-10/16 packages
- » Ultra-Small QFN-12 (3mmx3mm) for Non-Isolated Applications
- » Lowest Primary Conductor Resistance for Higher Peak and Smaller Package
- » Wide Current-Sensing Range from ±5A to ±400A, AC or DC
- » ±2.5% Accuracy over Temp, Factory-Trimmed
- » Immune to Stray Magnetic Fields via Differential Sensing
- » No Magnetic Hysteresis


MPS current sensors integrate galvanic isolation, high-voltage continuous operation, and high-current sensing into a small, industry-standard SOIC-8 or WSOIC-10/16 package. Our current sensors utilize an array of differential, linear Hall sensors that pick up the target induced magnetic field from the primary conductor while rejecting unwanted stray fields. This makes our current sensors ideal for use in magnetically noisy environments. In addition, the low resistance of the integrated conductor results in improved efficiency and reduced power loss compared to a traditional shunt resistor solution.

The primary conducting leads are electrically isolated from the sensor leads on the secondary side, producing a sensor with a high isolation voltage and working voltage. This makes our current sensors ideal for high-side current sensing without the need for expensive, large-footprint optical or inductive isolation alternatives.

Sensors for Motor Position/Speed Control and Current Sensors

Body Electronics

- » Retracting Door Handles
- » Tailgate Lifters
- » Suspension Sensors

- Wiper Motors
- » Spoiler Actuation

Power Management

- » Precision, High-Current Sensing and Control:
 - Wallbox Chargers
 - Qi Chargers
 - Power Monitoring Systems

Thermal Management

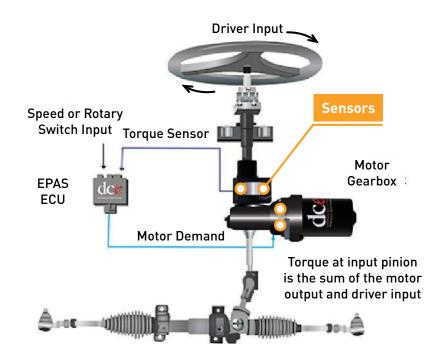
- Fluid Pumps
- » Air-Grill Shutters
- » Cooling Fan Modules

Interior Cabin Control and Car Audio

- » Contactless Infotainment Consoles
- » Audio Amplifier Current Sensing
- » Contactless Gearshift Control
- » Seat Position Motor Control
- » Sunroof Motor Control

Electronic Power Steering (EPS)

Product Highlight


Replace Optical Sensors in Automotive Power-Assisted Steering (PAS)

MAQ600, MAQ473, and MAQ79010

- » Cost-Effective, Contactless Alternative to Optical Sensing
- » AEC-Q100 Grade 1 Qualified
- » Wide Operating Temperature Range: -40°C to +150°C

MAQ79010

- » Differential Sensing, Immune to Stray Magnetic Fields in Excess of 4kA/m DC
- » ASIL-B Compliant with Functional Safety

AUTOMOTIVE PRODUCT SELECTOR GUIDE

Coreles	s Integrated C	urre		sors		^			,					
Pathur	inet Curent Ref	II	M Over	Jemp Accuracy	ature Range	C) Water Har	And Reif	Mark Bath	Mill Man's Over.	Waltage Vallage	Primary C	anducted full Certification	Packs	Ne Hier
N MCQ1805	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	3000	500	-	100	✓	-	0.9	✓ + TUV	SOIC-8	AEC-Q100, coreless, ratiometric analog output, immune to external magnetic field gradients
N MCQ1806	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	3000	500	-	100	-	-	0.9	✓	SOIC-8	AEC-Q100, coreless, ratiomentric analog output
S MCQ1810	±5, ±10, ±20, ±30, ±40, ±50, ±65, ±80, ±100	3.3, 5	2%	-40 to +150	5000	1100	560	350	✓	✓	0.3	Planned	SOIC- 10W	AEC-Q100, coreless, low primary conductor resistance, bi- or unidirectional sensing, ratiometric or absolute analog output, OCD with 1µs response time
S MCQ1812	±5, ±10, ±20, ±30, ±40, ±50, ±60, ±70, ±80	3.3, 5	2%	-40 to +150	5000	1100	560	350	✓	✓	1.0	Planned	SOIC- 16W	AEC-Q100, coreless, bi- or unidirectional sensing, ratiomentric or absolute analog output, prog. OCD with 1µs response time
N MCQ1823	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	100	-	-	120	✓	-	0.6	✓	QFN- 12 (3x3)	AEC-Q100, coreless, bi- or unidirectional sensing, ratiometric or absolute analog output, immune to external magnetic field gradients
S MCQ2803	±50, ±100, ±150, ±200, ±250, ±300, ±400	3.3, 5	3.5%	-40 to +150	5000	1000	475	150 /300	-	-	0.1	Planned	5-Pin THM, 5-Pin SMT	AEC-Q100, bi- or unidirectional sensing, ratiometric or absolute analog output
S MCQ2804	±50, ±100, ±150, ±200, ±250, ±300, ±400	3.3, 5	3.5%	-40 to +150	5000	1000	475	150 /300	✓	-	0.1	Planned	6-Pin THM, 6-Pin SMT	AEC-Q100, bi- or unidirectional sensing, ratiometric or absolute analog output, OCD with 1µs response time

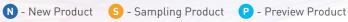
MagAlpha™ Magnetic Position Sensors

Parti	inter £30 Re	salition	/ .	y Voltage W	Artheritary Seeing Bank	THE STATE OF THE S	remency little later of the lat	unstant	Heickel Legion	E Raille CO	Weithte Lakes
Parti	*308			Sup		Citoti	latentis	143	Tellies.		Wetalie Hotes
MAQ430	12-Bit	SPI, UVW, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	390	8	-	-40 to +150	QFN-16 (3x3)	✓ AEC-Q100, wettable flanks
MAQ470	12-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	390	8	✓	-40 to +150	QFN-16 (3x3)	✓ AEC-Q100, wettable flanks
MAQ473	10-Bit to 14- Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	23 to 6k	8	✓	-40 to +150	QFN-16 (3x3)	✓ AEC-Q100, prog. filter, wettable flanks
N MAQ600	12-Bit to 15- Bit	SPI, ABZ, PWM, UVW, SSI	3 to 3.6	7	20+ (No Upper Limit)	75 to 17k	0	✓	-40 to +125	QFN-16 (3x3)	AEC-Q100, TMR front-end, high accuracy & BW, 0.6° ✓ INL (<0.1° INL thru user calibration with 32-word lookup table), no speed ern
N MAQ800	8-Bit	SPI, SSI	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	✓	-40 to +125	QFN-16 (3x3)	Optimized for automotive ✓ HMI applications, SSI outpu wettable flanks
N MAQ820	8-Bit	SPI, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	✓	-40 to +125	QFN-16 (3x3)	Optimized for automotive ✓ HMI applications, SSI outpu wettable flanks
N MAQ850	8-Bit	SPI, PWM	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	✓	-40 to +125	QFN-16 (3x3)	Optimized for automotive ✓ HMI applications, SSI outpu wettable flanks

MagDiff™ Magnetic Position Sensors with Stray Field Immunity

Pathur	get *3aft	sealuian Mertece	Sup	y Idiage	A Curentina	A Range Infil		Jonstant Ma	described by	esting Parket	, , , ,	estable lights wites
S MAQ79010	10-Bit to 14.5- Bit	SPI, SSI, I ² C, UVW, SENT, ABZ	3.3, 5	12	8+ (No Upper Limit)	12 to 100k	0	✓	-40 to +150	QFN-16 (3x3)	✓	AEC-Q100, ASIL-B compliant, robust against parasitic stray fields >4kA/m DC, or 5mT, wettable flanks
P MAQ79016	10-Bit to 14.5- Bit	SPI, SSI, I ² C, UVW, SENT, ABZ	Up to 26	12	8+ (No Upper Limit)	12 to 100k	0	✓	-40 to +150	QFN-16 (3x3)	✓	AEC-Q100, ASIL-B compliant, 26V with reverse polatity protection, robust against parasitic stray fields >4kA/m DC, or 5mT
S MAQ900	10-Bit to 14.5- Bit	SPI, SSI, I ² C, UVW, SENT, ABZ	3.3, 5	12	8+ (No Upper Limit)	12 to 100k	0	✓	-40 to +150	QFN-16 (3x3)	✓	AEC-Q100, robust against parasitic stray fields >4kA/m DC, or 5mT

MagVector™ 3D Magnetic Position Sensors


3.3

-40 to +150

TS0T23-6

AEC-Q100, digital component output, selectable operating power modes and sensing axis

MVQ310

12-bit I²C, SPI

 ± 125 or ± 250

25nA to 2.3

INDUSTRIAL BUILDING & FACTORY AUTOMATION

Safety & Security

- » Access Control
- » Automated Doors
- » Smart Door Locks
- » Elevators and Escalators
- » Fire Prevention

Power Management

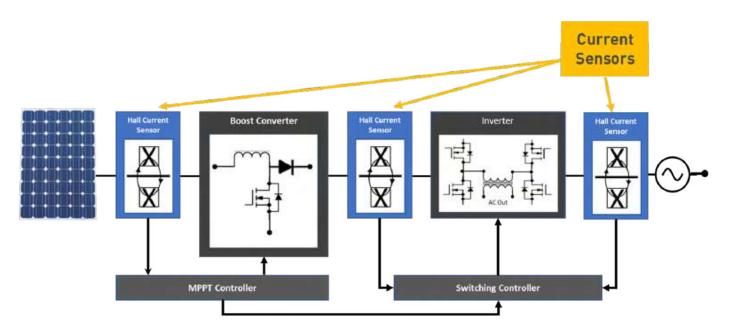
- » Solar Inverters
- » Power Monitoring
- » Power Access
- » Light Monitoring

Solar Inverters

Product Highlight

Maintain Maximum Power Point Tracking

MCS1805, MCS1806, and MCS1810


- » Accurate High-Side or Low-Side Current Sensing
- » Up to 3kV_{RMS} High Isolation from Line Voltage
- » Fast Over-Current Detection Flag <1µs</p>
- » UL Certified

Boost Modules

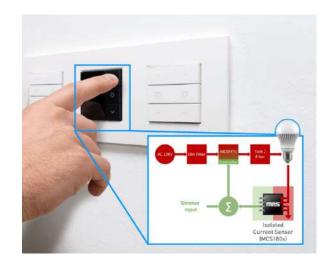
- » Accurate Current Sampling to Detect the Power Output from the PV Cells
- Control the PWM Duty Cycle to Increase or Decrease the Downstream Impedance

Inverter Stage

- » Accurately Track Current Phase to Match Line Current
- » Accurately Track Power Delivered to the Line

Climate & Energy Efficiency

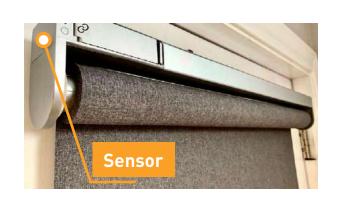
- » Shutters and Blinds
- » HVAC Compressors, Blowers, Flow Control
- » Climate Control Thermostats
- » Lighting Dimmer Control


Product Highlight

Smart Lighting Dimmers

MCS1806

- » Direct Sensing in Industry-standard 8-Pin SOIC Package
- » Wide Sensing Range from ±5A to ±50A
- » Low 0.9mΩ Primary Conductor Resistance
- » 3000V_{RMS} Isolation



Product Highlight

Smart Shades

MA732, MA330, MA735, MA736, and MA782

- » Motor Commutation and/or Position Feedback
- » Provides Absolute Feedback
- » Operates with a Low-Cost Magnet
- » Works with All Types of Motors
- » Can Be Operated at Side-Shaft or End-of-Shaft Locations
- » Ideal for Space-Constrained Applications
 - MA735, MA736, MA782: UTQFN (2mmx2mm) Package
- » MA782 Is Ideal for Battery-Powered Applications
 - Includes Wake-Up on Angle Detection
 - 0.5µA Standby Current

Industrial Automation

Product Highlight

Precision Robotic Joint Control

MA600 and MA900

MA600:

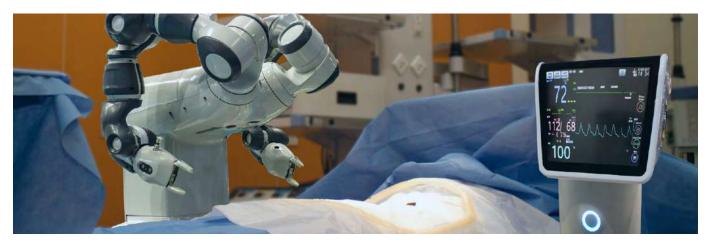

- » Factory-Calibrated: 0.6° Error (INL) over Temp
- >> <0.1° Error (INL) after User Calibration with On-Board Chip Look-Up Table
- » 12-Bit to 15-Bit Noise-Free Resolution
- » 21kHz Bandwidth
- » Zero Latency to Minimize Speed Errors

MA900:

- » Differential Sensing, Immune to Stray Magnetic Fields in Excess of 4kA/m DC
- » 10-Bit to 14.5-Bit Noise-Free Resolution
- » Available in a Tiny QFN-16 (3mmx3mm) Package

Cost-Effective Solution for Managing:

- » High-Speed Torque
- » Position
- » Speed Control



Lab Automation

- » Robot Control
- » Probe Processing
- » Pump Motor Control
 - Infusion Pumps
 - Insulin Pumps

Surgical Robotics

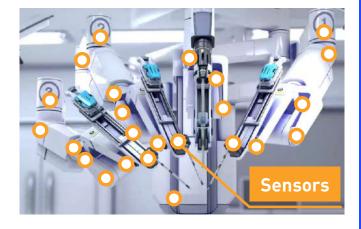
- » Automated and Remote Surgical Robots
- » Dental Processing

Product Highlight

Surgical Robotics

MA600 and MA900

MA600:


- » Factory-Calibrated: 0.6° Error (INL) over Temp
- > <0.1° Error (INL) after User Calibration with On-Board Chip Look-Up Table
- » 12-Bit to 15-Bit Noise-Free Resolution
- » 21kHz Bandwidth
- » Zero Latency to Minimize Speed Errors

MA900:

- » Differential Sensing, Immune to Stray Magnetic Fields in Excess of 4kA/m DC
- » 10-Bit to 14.5-Bit Noise-Free Resolution
- » Available in a Tiny QFN-16 (3mmx3mm) Package

Cost-Effective Solution for Managing:

- » High-Speed Torque
- » Position
- » Speed Control

Insulin Pumps

Product Highlight

Accuracy and Reliability in Tiny Form Factor

MA980

- » 9-Bit To 13-Bit Absolute Resolution
- » Differential Sensing Rejects Stray Fields
- » μPower Operation through Duty Cycle Control
- » CSP-16 (1.6mmx1.6mm) Package Is Ideal for Space-Constrained Applications

CONSUMER PRODUCTS

Mobile Phones, Laptops, and VR Headsets

- » Foldable Mobile Flip-Phone Angle Management
- » Foldable Tablet Angle Sensing
- » Precision Open/Close Angle Management
- » HMI Contactless Knobs & Buttons

Product Highlight

No-Bezel Laptops and Foldable Phones

MA782

- » Smallest Open/Close Detection Solution
- » Helps Minimize or Eliminate Bezel
- » Can Be Placed in the Folding Axis
- » Smallest UTQFN (2mmx2mm) Package
- » Lowest Power: <0.5µA Standby Current
- » Wake-On-Change Angle Detection
- » Very Small (<1mmx1mm) Magnet</p>
- » Provides Absolute Angle Output

Kitchen Appliances/Mixers with Cooking Options

Product Highlight

Main Motor Position Detection

MA732, MA735, MA736, and MA900

- » Motor Commutation and/or Position Feedback
- » Ideal for Space-Constraint Applications
 - MA735, MA736: UTQFN (2mmx2mm) Package
- » Differential Sensing Rejects Stray Fields
 - MA900: End-of-Shaft Only

Secure Lid Closure Detection

MV300, MV310

- » Senses Position of Magnets in Lid
- » Flexible I²C or SPI Interface

Control and Menu Buttons

MA800

- » Contactless Sensing for Long Life with No Wear
- » 8-Bit Resolution Absolute Angle Encoder
- » Push and Pull Detection with Configurable Thresholds

Current Sensing(Heating, Motor Control, Power Supplies)

MCS1806

- » Complete Isolated Current Sensor
- » Wide Sensing Range
 - ±5A to ±50A. AC or DC

E-Bikes & Scooters

- » BLDC Motors Smaller, Lighter, Increased Reliability
- » Enables Highest Power Density
- » Provides Absolute Angle, Position, and Torque

Flexible Interface:

- » SPI Commutation for UVW Commutation
- » ABZ Speed Control

Product Highlight

E-Bike Ultra-Small BLDC Motors

MA302

- » Speed, Torque, and Absolute Position Control
- » Smallest QFN (3mmx3mm) Package
- » No Customer Calibration Required
- » Factory Calibrated
- » On-Chip Non-Volatile Memory (NVM)
- » Wide -40°C to +125°C Operating Temp Range
- Flexible Interface
 - SPI for Digital Angle Readout and Sensor Configuration
 - ABZ/UVW for Motor Control, Commutation, and Incremental Output
 - No Firmware Changes Required when Replacing Optical Encoders; ABZ Output is Compatible with Optical Outputs

CONSUMER & INDUSTRIAL PRODUCT SELECTOR GUIDE

Integrated Current Sensors

			ne A		NCC!	perture Re	and Wite	SE (4 242)	de Ware Ballinforced Sol	ation (V	KHZ!	the Belging Republic	ce ductor	rion W	
	Pathini	et Curentes	1	e 04	er leng keci	geraturo Iso	Jation Vol.	rking Vote	inforced Base	idwidth.	ART UT	it Detection	ce state of the st	Packar.	ge Hales
	MCS1800	±12.5, ±25	3.3	3%	-40 to +125	1000	200	-	100	-	-	1.2	-	SOIC-8	Coreless, ratiometric analog output
	MCS1801	±12.5, ±25	5	3%	-40 to +125	1000	200	-	100	-	-	1.2	-	SOIC-8	Coreless, ratiometric analog output
	MCS1802	±5, ±10, ±20, ±30, ±40, ±50	3.3	2.5%	-40 to +125	2200	250	-	100	-	-	0.9	✓	SOIC-8	Coreless, ratiometric analog output
	MCS1803	±5, ±10, ±20, ±30, ±40, ±50	5	2.5%	-40 to +125	2200	250	-	100	-	-	0.9	✓	SOIC-8	Coreless, ratiometric analog output
N	MCS1805	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	3000	500	-	100	✓	-	0.9	✓ + TUV	SOIC-8	Coreless, ratiometric analog output, immune to external magnetic field gradients
	MCS1806	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	3000	500	-	100	-	-	0.9	✓	SOIC-8	Coreless, ratiometric analog output
S	MCS1810	±5, ±10, ±20, ±30, ±40, ±50, ±65, ±80, ±100	3.3, 5	2%	-40 to +125	5000	1100	560	350	✓	✓	0.3	Planned	SOIC- 10W	Coreless, low primary conductor resistance, bi- or unidirectional sensing, ratometric or absolute analog output, prog. OCD with 1µs response time
\$	MCS1812	±5, ±10, ±20, ±30, ±40, ±50, ±60, ±70, ±80	3.3, 5	2%	-40 to +125	5000	1100	560	350	✓	✓	1.0	Planned	SOIC- 16W	Coreless, bi- or unidirectional sensing, ratiomentric or absolute analog output, prog. OCD with 1µs response time
N	MCS1823	±5, ±10, ±20, ±30, ±40, ±50	3.3, 5	2.5%	-40 to +125	100	N/A	-	120	✓	-	0.6	✓	QFN-12 (3x3)	Coreless, bi- or unidirectional sensing, ratiometric or absolute analog output, immune to external magnetic field gradients
N	MCS1826	±15.5, ±31	3.3 to 5	3%	-40 to +125	100	N/A	-	120	✓	-	0.6	✓	QFN-12 (3x3)	Coreless, bidirectional sensing, ratiometric analog output, immune to external magnetic field gradients
S	MCS2803	±50, ±100, ±150, ±200, ±250, ±300, ±400	3.3, 5	3.5%	-40 to +150	5000	1000	475	150 /300	-	-	0.1	Planned	5-Pin THM, 5-Pin SMT	Bi- or unidirectional sensing, ratiometric or absolute analog output
S	MCS2804	±50, ±100, ±150, ±200, ±250, ±300, ±400	3.3, 5	3.5%	-40 to +150	5000	1000	475	150 /300	✓	-	0.1	Planned	6-Pin THM, 6-Pin SMT	Bi- or unidirectional sensing, ratiometric or absolute analog output, prog. OCD with 1µs response time

MagVector™ 3D Magnetic Position Sensors Contesion the US Saleing Range (AT) Suphy little III Hotes Digital component output, selectable ±50 or ±180 **N** MV300 12-Bit I²C, SPI 3.3 10nA to 2.5 40 -40 to +125 TS0T23-6 operating power modes Digital component output, selectable MV310 12-Bit I²C, SPI 3.3 25nA to 2.3 ±125 or ±250 40 -40 to +125 TS0T23-6 operating power modes and sensing axis

MagDiff™ Magnetic Position Sensors with Stray Field Immunity

	Pathurh	et _{žid} Resuli	hterace	Suph	Supply Supply	Litter Hah	Cutoffee	lagual lagual and a state of the state of th	onstant Lus Tempe	Pathage Co	Miles
5	MA900	10-Bit to 14.5-Bit	SPI, SSI, I ² C, UVW, ABZ	3.3, 5	12	8+ (No Upper Limit)	12 to 100k	0	-40 to +125	QFN-16 (3x3)	Robust against parasitic stray fields exceeding 4kA/m DC, or 5mT
P	MA980	9-Bit to 13-Bit	SPI	3.3, 5	25μΑ	8+ (No Upper Limit)	5 to 160k	0	-40 to +125	WLCSP (1.6x1.6)	Micropower, smallest footprint, robust against parasitic stray fields

MagAlpha™ Magnetic Position Sensors

	<i></i> ઇ		in		1.98E/N	Cutentum Sassing Balle	, it	later chest	onstant	Aftie Balde CO	
	Pathurbe	, 30 Result	Interface	Subjy ¹	Subj.	Curentum Spring Range	Citatific	latency are	Ins. Lember	attii Patkag	Miles
	MA102	12-Bit	SPI, UVW	3 to 3.6	11.7	30+ (No Upper Limit)	390	8	-40 to +125	QFN-16 (3x3)	Motor commutation angle sensor, UVW multi-pole pair, differential outputs
	MA302	12-Bit	SPI, UVW, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	390	8	-40 to +125	QFN-16 (3x3)	Motor commutation angle sensor, 12-bit SPI output, ABZ & UVW incremental outputs
	MA310	12-Bit	SPI, UVW, ABZ	3 to 3.6	11.7	15+ (No Upper Limit)	93	8	-40 to +125	QFN-16 (3x3)	Motor commutation angle sensor, 12-bit SPI output, low magnetic field
	MA330	10-Bit to 14-Bit	SPI, UVW, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	23 to 6k	8	-40 to +125	QFN-16 (3x3)	Motor commutation angle sensor, up to 14-bit SPI output, programmable filter
N	MA600	12-Bit to 15-Bit	SPI, ABZ, PWM, UVW, SSI	3 to 3.6	7	20+ (No Upper Limit)	75 to 17k	0	-40 to +125	QFN-16 (3x3)	TMR front-end high accuracy & BW, 0.6° INL (<0.1° INL thru user calibration with 32-word lookup table), no speed error
	MA702	12-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	390	8	-40 to +125	QFN-16 (3x3)	12-bit SPI output, ABZ incremental & PWM outputs
	MA704	10-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	2970	8	-40 to +125	QFN-16 (3x3)	12-bit SPI output, high BW, ABZ incremental & PWM outputs

MagAlpha™ I	Magnetic	Positio	n Sensors		
ither	edution	æ	udtage W Curentina	Rangehril	Cequency HAI a Constant

MayA	thila M	agnetic Fus								
PSIM	uniter 30 R	esolution Interface	<u></u>	id y diage W	Curentum)	Cutof Cutof	Fedlency Hall Steller	Constant Louisant Led Us Temper	Treffette Louis Line Bulletine Line Bulletine Line Bulletine Line Bulletine	Miles
69.	*>3	Inte	ch.	, cm	ch.	Cin	18,00	161.	680	Mo
MA710	12-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	15+ (No Upper Limit)	93	8	-40 to +125	QFN-16 (3x3)	12-bit SPI output, low magnetic field, ABZ incremental & PWM outputs
MA730	14-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	40+ (No Upper Limit)	23	8	-40 to +125	QFN-16 (3x3)	14-bit SPI output, ABZ incremental & PWM outputs
MA732	10-Bit to 14- Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	23 to 6k	8	-40 to +125	QFN-16 (3x3)	Prog. filter, ABZ incremental & PWM outputs
MA734	8-Bit to 12.5- Bit	SPI	3 to 3.6	11	30+ (No Upper Limit)	95, 380, 95k	3	-40 to +125	QFN-16 (3x3)	Prog. filter, low latency
MA735	9-Bit to 13-Bit	SPI, SSI, PWM, ABZ	3 to 3.6	11.7	40+ (No Upper Limit)	23 to 6k	8	-40 to +125	UTQFN-14 (2x2)	Ultra-small footprint, prog. filter, ABZ incremental & PWM outputs
MA736	8-Bit to 12.5- Bit	SPI	3 to 3.6	11	30+ (No Upper Limit)	95, 380, 95k	3	-40 to +125	UTQFN-14 (2x2)	Ultra-small footprint, prog. filter, low latency
MA780	8-Bit to 12-Bit	SPI	3 to 3.6	0.5µA to 10	30+ (No Upper Limit)	5 to 160k	4 to 4000	-40 to +125	QFN-16 (3x3)	Optimized for low-power, integrated wake-up and IRQ
MA782	8-Bit to 12-Bit	SPI	3 to 3.6	0.5µA to 10	30+ (No Upper Limit)	5 to 160k	4 to 4000	-40 to +125	UTQFN-14 (2x2)	Micropower, ultra-small footprint, integrated wake-up and IRQ
MA800	8-Bit	SPI, SSI	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	-40 to +125	QFN-16 (3x3)	Optimized for HMI applications
MA820	8-Bit	SPI, ABZ	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	-40 to +125	QFN-16 (3x3)	Optimized for HMI applications
MA850	8-Bit	SPI, PWM	3 to 3.6	11.7	30+ (No Upper Limit)	90	4000	-40 to +125	QFN-16 (3x3)	Optimized for HMI applications

Position Sensor Magnets

Partwriter	Magnetitali	geonetry	Hateial	%	July 10	mm He	dr. mm	Gap Min Inth	a Maximum Radi	Malalatethic III.
MAG10-2C-30.25	Diametrical	Cylinder	NdFeB, Grade N35SH	3	_	2.5	0	2	0.1	_
MAG10-2C-40.25	Diametrical	Cylinder	NdFeB, Grade N35SH	4	-	2.5	0	2.6	0.2	Standard-size, cost-effective
MAG10-2C-50.25	Diametrical	Cylinder	NdFeB, Grade N35SH	5	-	2.5	0	3.1	0.2	Standard-size, cost-effective
MAG10-2C-60.25	Diametrical	Cylinder	NdFeB, Grade N35SH	6	-	2.5	0	3.6	0.3	-
MAG10-2C-80.25	Diametrical	Cylinder	NdFeB, Grade N35SH	8	-	2.5	0	4.5	0.4	-
MAG10-2R-50.12.25	Diametrical	Ring	NdFeB, Grade N35SH	5	1.25	2.5	1	1.4	0.4	Accurate application
MAG10-2R-60.15.25	Diametrical	Ring	NdFeB, Grade N35SH	6	1.5	2.5	1.3	1.6	0.6	Accurate application
MAG10-2R-80.20.25	Diametrical	Ring	NdFeB, Grade N35SH	8	2	2.5	2	2.5	8.0	Accurate application
MAG10-2B-40.25	Axial	Half-Cylinder	NdFeB, Grade N35SH	4	-	2.5	0	2.1	<0.1	Low field emission
MAG10-2B-50.25	Axial	Half-Cylinder	NdFeB, Grade N35SH	5	-	2.5	0	2.7	<0.1	Low field emission
MAG10-2B-60.25	Axial	Half-Cylinder	NdFeB, Grade N35SH	6	-	2.5	0	3.2	<0.1	Low field emission
MAG10-2B-80.25	Axial	Half-Cylinder	NdFeB, Grade N35SH	8	-	2.5	0	4.2	0.1	Low field emission

ABOUT MONOLITHIC POWER SYSTEMS

Who we are

We are creative thinkers. We break boundaries. We take technology to new levels. As a leading international semiconductor company, Monolithic Power Systems (MPS) creates cutting-edge solutions to improve the quality of life with green, easy-to-use products.

What we do

We make power design fun! With our innovative proprietary technology processes, we thrive on reimagining and redefining the possibilities of high-performance power solutions in industrial applications, telecom infrastructures, cloud computing, automotive, and consumer applications.

Where we come from

It started with a vision. Michael Hsing, pioneering engineer and CEO, founded Monolithic Power Systems, Inc. in 1997 with the belief that an entire power system could be integrated onto a single chip. Under his leadership, MPS has succeeded not only in developing a monolithic power module that truly integrates an entire power system in a single package, but also it continues to defy industry expectations with its patented groundbreaking technologies.

Our values

We cultivate creativity

As a company, we believe in creating an environment that encourages and challenges our employees to collaborate and think outside the box to excel beyond their preconceived capabilities.

We do not accept the status quo

We do not believe in limitations. It is not about what is, but what can be. Possibilities are endless at MPS.

We are passionate about sustainability

It's about the future. From materials to finances, we are committed to conservation. We will not tolerate waste in an effort to improve and preserve the quality of life.

We are committed to providing innovative products to our customers

Let us do the heavy lifting. We relentlessly strive to make system design versatile and effortless to meet our customers' specific needs. We'll do the work, so our customers can have the fun!

FAST RESPONSE

Quotes, Availability, Engineering Support & Samples
MonolithicPower.com/Quote-Samples-Support

US Offices

MPS Kirkland

5808 Lake Washington Blvd. NE Kirkland, WA 98033, USA Tel: +1 425-296-9956

MPS Detroit

19499 Victor Parkway Livonia, MI 48152, USA Tel: +1 248-907-0222

MPS San Jose

79 Great Oaks Blvd. San Jose, CA 95119, USA Tel: +1 408-826-0600

MPS Phoenix

2065 S. Cooper Road Suite 3 Chandler, AZ 85826, USA

MPS North Carolina

Canterbury Hall 4815 Emperor Blvd. Durham, NC 27703, USA

EU Offices

MPS Barcelona

Av. Josep Tarradellas 123, 5-A 08029 Barcelona, Spain Tel: +34-931-815-400

MPS Munich

Alte Landstrasse 25 85521 Ottobrunn, Germany Tel: +49-89-80913512-0

MPS Portugal

Rua D. Manuel II, 290, Piso 7 4050-344 Porto, Portugal

MPS Germany

Gutenbergstrasse 4, 77955 Ettenheim, Germany

MPS Lausanne

Route de Lully 5 A 1131 Tolochenaz, Switzerland Tel: +41-21-805-0100

Order Direct

monolithicpower.com

Online Order Support

monolithicpower.com/onlineorders

Asia Offices

MPS China Chengdu

#8 Kexin Road West Park of Export Processing Zone West Hi-Tech Zone Chengdu, Sichuan, 611731 Tel: +86-28-8730-3000

MPS China Hangzhou

Floor 6, Building A2, Xixi Center, No. 588 West Wenyi Road, Xihu District Hangzhou, Zhejiang, 310012 Tel: +86-571-8981-8588

MPS China Shanghai

Floor 27, Magnolia Plaza, No. 777, Hongqiao Road, Xuhui District Shanghai 20030 Tel: +86-21-2225-1700

MPS China Shenzhen

Room 1401, Kingkey Riverfront Times Square Branch North, Binhe Avenue South, Futian District Shenzhen Guangdong, 518054 Tel: +86-755-3688-5818-5852

MPS Taiwan

29F, No. 97, Section 1, Xintai 5th Road Xizhi District, New Taipei City Tel: +886-2-86911600

MPS Japan Tokyo

Shinjuku Sumitomo Bldg. 31F 2-6-1 Nishishinjuku Shinjuku-ku, Tokyo 163-0231, Japan Tel: +81-3-5989-0885

MPS Japan Osaka

Room 301, NLC Shin-Osaka Business Zone III, 3-14-20 Nishinakajima, Yodogawa-ku, Osaka-shi, Osaka 532-0011, Japan Tel: +81-6-6300-7432

MPS Singapore

No. 8 Ubi Road 2 #08-12 Zervex, Singapore 408538

MPS Korea

C 403, 4F Pangyo Digital Center, 242, Pangyo-ro, Bundang-gu, SeongNam-si, Gyeonggi-do, Korea 13487 Tel: +82-70-7830-9950

MPS India

Unit G-12, Prestige Towers, No 99 / 100, Residency Road, Bangalore 560025 Tel: +91-80-4124-0312 / 20

MPS Investor Relations

monolithicpower.com/investors

