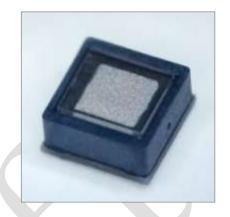


Lextar com

VCSEL Array Module (Product Specification)

Preliminary



Approval Sheet

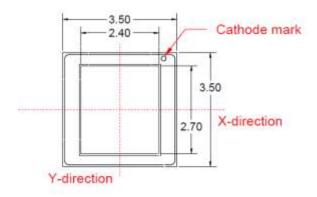
PV88QB4 V5 VCSEL Array Module Product Specification

Product	VCSEL Array Module
Part Number	PV88QB4 V5
Customer	
Issue Date	2020/12/09

Features

- ✓ Compact dimensions : 3.5 mm × 3.5 mm × 1.6 mm
- ✓ Peak wavelength: λ p = 940 nm
- ✓ Rectangular emission pattern with a 116° x 98° diffuser
- ✓ Environmental friendly; RoHS compliance

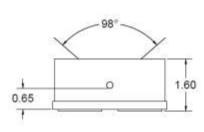
Applications

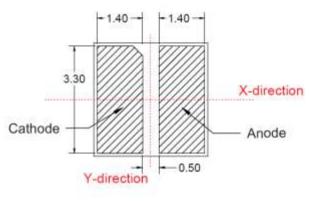

- ✓ Scene understanding with multi-object detection
- √ 3D depth assistance
- ✓ Presence detection



Outline Dimension

PV88QB4 V5 VCSEL Array Module Product Specification


■ Package Dimension



Top

Side-Y

Side-X

Bottom

Circuit Diagram

Unit: mm

Tolerance: ±0.1mm

Characteristics

PV88QB4 V5 VCSEL Array Module
Product Specification

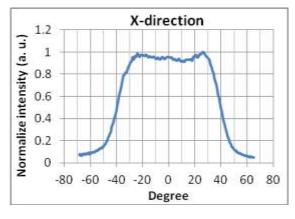
■ Electro-optical Characteristics (T_a=25°C)

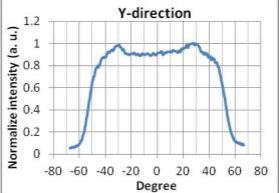
Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
Forward Voltage	V _F	$I_F = 3.5 A$	1.9	2.2	2.5	V
Forward voltage temperature variation	\triangleV_F/\triangleT	$I_F = 3.5 A$		-2		mV/°C
Wavelength	λ_{p}	$I_F = 3.5 A$	930	940	950	nm
Wavelength temperature variation	$\Delta \lambda_p / \Delta T$	$I_F = 3.5 A$		0.07		nm/°C
Radiant Power	Фе	$I_F = 3.5 A$	2000	2700	3200	mW
Slope Efficiency	SE		0.6	0.8	1.1	W/A
Spectral Width	Δλ	$I_F = 3.5 A$	1	1.8	2.2	nm
Threshold Current	l _{th}		0.3	0.75	1	Α
Power Conversion Efficiency	PCE	$I_F = 3.5 \text{ A}$	30	35		%
X-direction Divergence Angle(FWHM)	θ_{x}	$I_F = 3.5 \text{ A}$	71	76	81	degree
Y-direction Divergence Angle(FWHM)	θ_{y}	I _F = 3.5 A	95	101	117	degree
FOV-x	FOV _x	$I_F = 3.5 A$	93	98	103	degree
FOV-y	FOV _y	$I_F = 3.5 \text{ A}$	110	116	122	degree

Note:

- (1) Lextar maintains a tolerance of ±10% on radiant power, ±0.1V on forward voltage and ±1nm on peak wavelength measurements.
- (2) For production, devices are tested with $I_F = 3.5$ A, 0.5 ms pulse width, single pulse. $I_F = 18$ A is applicable for operating at 15 ns pulse width, 0.24% duty cycle, with the device soldered on a PCB.
- (3) For divergence angle, emitted light from the device was projected on a flat screen. Divergence angle was calculated from full-width-half-maximum (FWHM) intensity distribution of the projected emission pattern.
- (4) Field of view (FOV) is distribution of radiation intensity which is measured with a goniometer system. Emitted light from the device is measured by a photo-detector directly without a screen.

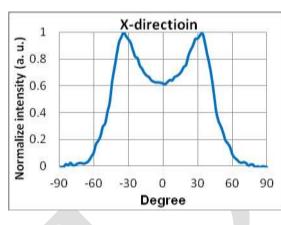
■ Absolute Maximum Ratings

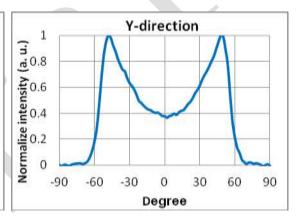

Parameter	Symbol	VALUE	Unit
Operation Temperature	T_op	-40~105	°C
Storage Temperature	T_{stg}	-40~125	°C
Reverse Power Supply Voltage	Vr	5	V
Relative Humidity		5%~95%	
Peak CW Forward Current	$I_F(CW)$	3	А
Peak Pulsed Forward Current	Ipeak	20	А
ESD Exposure (Human Body Model)	ESD HBM	1	KV


Note:

Operation condition for peak pulsed forward current: pulse width < 100ns and duty cycle < 1%

Intensity Distribution of Projected Pattern

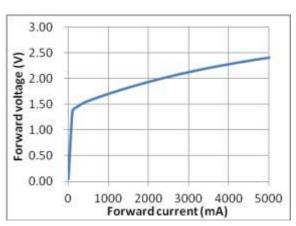




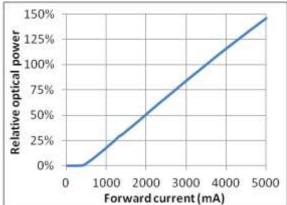
Note:

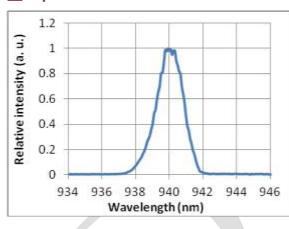
Emitted light from the device was projected on a flat screen. The projected emission pattern was captured by a CCD for obtaining intensity distribution.

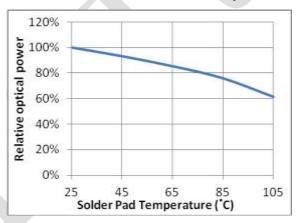
Field of View



Note:

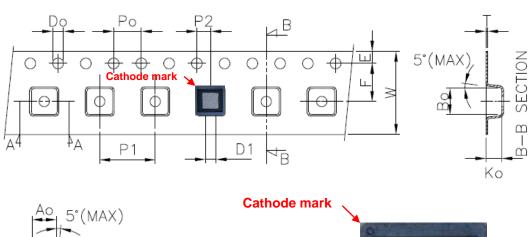

Field of view (FOV) is distribution of radiation intensity which is measured with a goniometer system. Emitted light from the device is measured by a photo-detector directly without a screen.

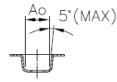

Forward Voltage vs. Current


■ Radiant Power vs. Current

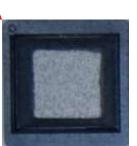
Spectrum

■ Radiant Power vs. Temperature

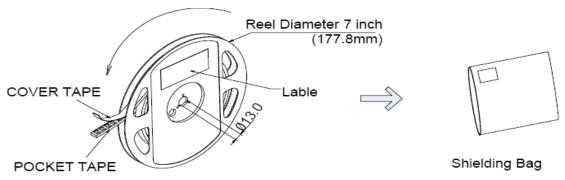




Packing


PV88QB4 V5 VCSEL Array Module Product Specification

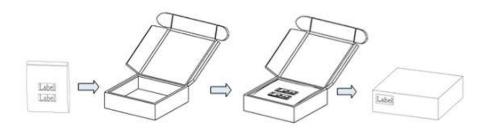
■ Emitter Reel Packing


A-A SECTION

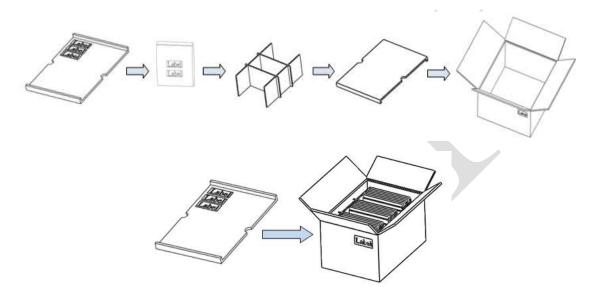
UNIT:mm

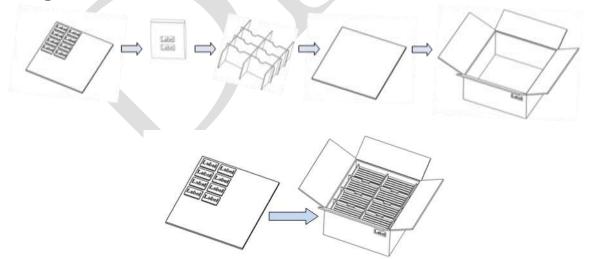
symbol	Ao	Во	Ko	Po	P1	P2	Т
spec	3.70±0.10	3.70±0.10	2.4±0.10	4.00±0.10	8.00±0.10	2.00±0.05	0.3±0.05
symbol	E	F	Do	D1	W	10Po	
spec	1.75±0.10	5.50±0.05	1.55+0.10	1.5 min	12.0±0.20	40.0±0.20	

User Reel direction



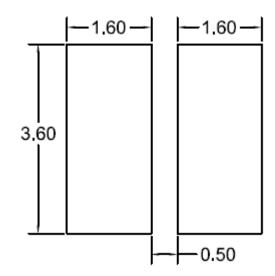
7 inch Anti-Static Reel Max 500pcs/reel


Min 200pcs/reel


■ Small Box

■ Medium Box

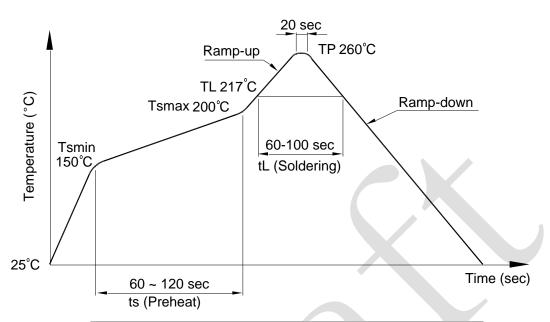
■ Large Box



Application Notes

PV88QB4 V5 VCSEL Array Module Product Specification

Soldering PAD Design

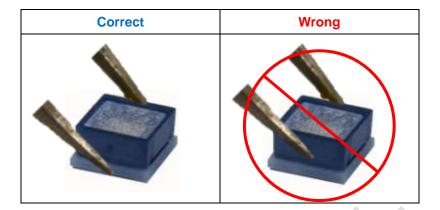


Unit: mm

Tolerance: ±0.1mm

Recommended Reflow Soldering Profile (JEDEC-STD-020 latest version compliant)

Profile Items	Conditions
Preheat	
-Temperature Min.(T _{Smin})	150°C
-Temperature Max.(T _{Smax})	200°C
-Time(Min. to Max.)(t _S)	90±30 sec
Soldering Zone	P
-Temperature(T _L)	217°C
-Time	60~100 sec
Peak Temperature(T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec


Note:

- 1. One time soldering is recommended; do not exceed 3 times reflow process.
- 2. The recommended peak temperature is 245°C. The maximum soldering temperature should be controlled under 260°C.

Handing manual

Do not touch the lens and housing with the tweezers or fingers. Do not push on the lens. Do not apply more than 1Kg of force directly onto the lens. Excessive force on the lens could damage the PKG. Please handle the component by clamping ceramic substrate.

Storage

- Before opening the package, the Device should storage under 30°C, 70% RH.
 Recommend to use within one year.
- After opening the package bag, the Device should be keep under 30°C, 60% RH.
 Recommend to use within 7days. If unused Device remain, suggest to store into moisture proof bag or original package bag with moisture absorbent material such as silica gel.
 Reseal well is necessary.
- If the product exceeded the storage period or the moisture absorbent material faded away, baking treatment should be done by following conditions.
 Bake condition: 60℃, 12hours (One time only).

Static Electricity

- Device package is extremely sensitive to static electricity. It's recommended that
 anti-electrostatic glove and wrist ban d is necessary when handling the Device. All
 devices are also be grounded properly as well.
- Protection devices design should be considered in the Device driving circuit

Cleaning

- Do not clean the device by dipping into any liquid or flushing with any liquid.
- Recommend to clean the device by air blowing, if necessary.

Revision History

PV88QB4 V5 VCSEL Array Module
Product Specification

Revision	Date	Description
A_00	07/01/2020	- Preliminary document
A_01	12/10/2020	- Modified carrier spec.
A_02	09/12/2020	Change diffuser LENS to 116*98Update product outline

