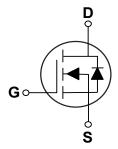


General Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.


BV _{DSS}	R _{DS(ON)}	I _D
60 V	100 mΩ	3 A

Features

- $R_{DS(ON)} \le 100 m\Omega @V_{GS} = 10V$
- · Improved dv/dt Capability
- · Fast Switching
- · Green Device Available

SOT-23 Pin Configuration

Applications

- Notebook
- · Load Switch
- · Hand-Held Instruments

Absolute Maximum Ratings (T_A=25°C unless otherwise noted) **Symbol Parameter** Value Units V_{DS} Drain-Source Voltage 60 ٧ V_{GS} Gate-Source Voltage ±20 V 3 I_{D} Drain Current - Continuous Α Drain Current - Pulsed (NOTE 1) 12 I_{DM} Α P_{D} Power Dissipation (NOTE 1) 1.5 W T_{J} Operating Junction Temperature Range -55 to 150 ٥С -55 to 150 T_{STG} Storage Temperature Range ٥С 2310 Marking Code

Thermal Characteristics					
Symbol	Parameter	Value	Unit		
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	83.3	°C/W		

Electrical Characteristics (T_J=25°C, unless otherwise noted)

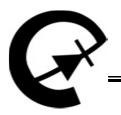
Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	60			٧
I _{DSS}	Drain-Source Leakage Current	V_{DS} =48V , V_{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA

On Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V , I_D =2A			100	mΩ
		V_{GS} =4.5V , I_D =1A			110	11122
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	1.0		2.5	V

Dynamic and switching Characteristics (NOTE 3)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Q_g	Total Gate Charge			7		
Q_gs	Gate-Source Charge	V_{DS} =30V , V_{GS} =4.5V , I_{D} =2A		1.2		nC
Q_{gd}	Gate-Drain Charge	Γ		1.5		
$T_{d(on)}$	Turn-On Delay Time			6.5		
T _r	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{GEN} =1 Ω , I_{D} =2A		15.2		ns
$T_{d(off)}$	Turn-Off Delay Time			15.2		115
T_f	Fall Time			10.3		
C _{iss}	Input Capacitance			515		
C _{oss}	Output Capacitance	V_{DS} =30V , V_{GS} =0V , f=1MHz		26		pF
C _{rss}	Reverse Transfer Capacitance	1		20		

Drain-Source Diode Characteristics and Ratings

Symbo	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current				3	Α
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A			1.2	V

NOTES:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 3. This value is guaranteed by design hence it is not included in the production test.

TNMNG100A

60V N-Channel MOSFETs

Characteristics Curves

FIG. 1-Drain Current

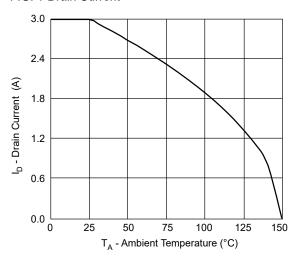


FIG. 2-Normalized $V_{\text{GS}(\text{th})}$ vs T_J

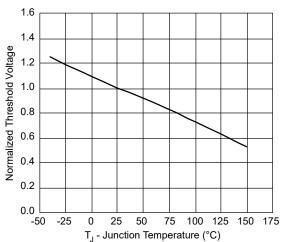


FIG. 2-Normalized $R_{DS(ON)}$ vs T_J

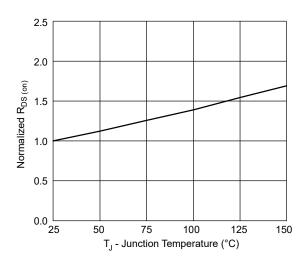


FIG. 4-Gate Charge Characteristics

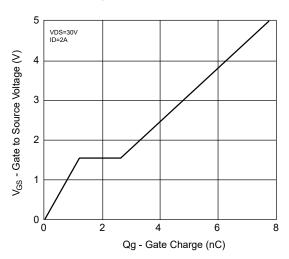


FIG. 5-Transfer Characteristics

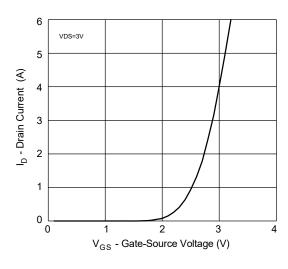
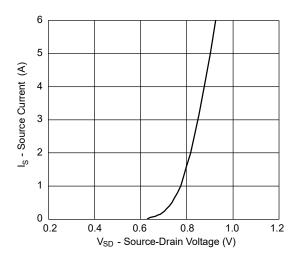
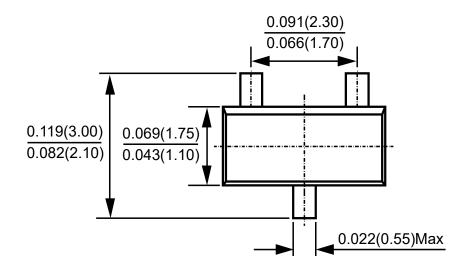
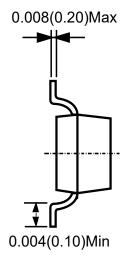





FIG. 6-Forward Characteristics



Package Outline Dimensions

SOT-23 Dimensions in inches and (millimeters)

LEGAL DISCLAIMER

- The product is provided "AS IS" without any guarantees or warranty. In association with the product, Eris Technology Corporation, its affiliates, and their directors, officers, employees, agents, successors and assigns (collectively, the "Eris") makes no warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, of title, or of non-infringement of third party rights.
- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Eris. Eris assumes no responsibility for any errors that may appear in this document.
- Eris does not assume any liability arising out of the application or use of this document or any product described herein, any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Eris and all the companies whose products are represented on Eris website, harmless against all damages.
- No license, express or implied, by estoppels or otherwise, to any intellectual property is granted by this document or by any conduct of Eris. Product name and markings notes herein may be trademarks of their respective owners.
- Eris does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- Should Customers purchase or use Eris products for any unintended or unauthorized application, Customers shall indemnify and hold Eris and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
- The official text is written in English and the English version of this document is the only version endorsed by Eris. Any discrepancies or differences created in the translations are not binding and have no legal effect on Eris for compliance or enforcement purposes.