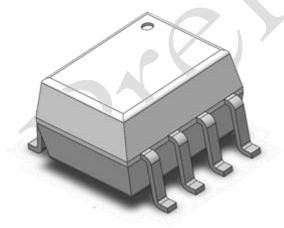


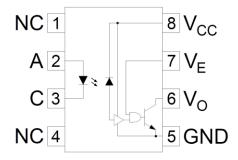
Features

- High speed 10M Bit/s
- High isolation voltage between input and output (Viso=3750 Vrms)
- Wide operating temperature range of -40°C to 85°C
- RoHS compliance
- REACH compliance
- Halogen free compliance
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(40039590)
 - CQC GB4943.1, GB8898 (17001167067)
 - IEC62368 (FI/41119)


Description

The CT0600, CT0601, CT0611 optocouplers consist of a 850 nm LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. This output features an open collector, there by permitting wired OR outputs. The switching parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA.

Applications


- Line receivers
- Telecommunication equipment
- High speed logic ground isolation
- Feedback loop in switch-mode power supplies
- Home appliances

Package Outline

Note: Different bending options available. See package dimension.

Schematic

Truth Table

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

Absolute Maximum Ratings $T_A = 25$ °C, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	3750	V _{RMS}	1
Topr	Operating temperature	-40 ~ +85	°C	
Тsтg	Storage temperature	-55 ~ +125	°C	
TsoL	Soldering temperature	260	°C	2
Emitter			N , /	
l _F	Forward current	50	mA	
V_{R}	Reverse voltage	5	V	
Pı	Power dissipation	100	mW	
Detector				
Po	Power dissipation	85	mW	
lo	Average Output current	50	mA	
Vo	Output voltage	7.0	V	1min(Max.)
Vcc	Supply voltage	7.0	V	
VE	Enable Input Voltage Not to Exceed VCC by more than 500mV	5.5	V	

Notes

- 1. AC for 1 minute, $RH = 40 \sim 60\%$.
- 2. For reflow process

Electrical Characteristics

 T_A =-40 - 85°C (unless otherwise specified). Typical values are measured at T_A = 25°C and V_{CC} =5V

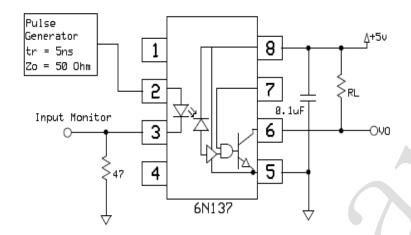
Emitter Characteristics

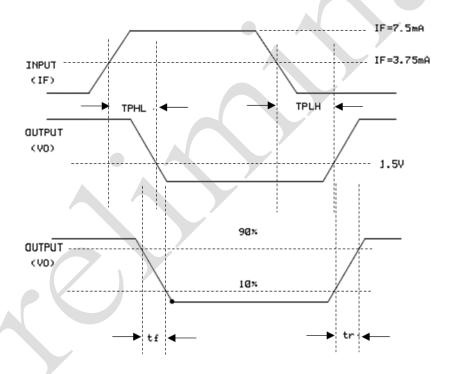
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F = 10mA	-	1.6	1.8	V	
VR	Reverse Voltage	I _R = 10μA	5.0	-	0	V	
$\Delta V_F/\Delta T_A$	Temperature coefficient of forward voltage	I _F =10mA	-	-1.8	A	mV/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
ICCL	Logic Low Supply Current	I _F =10mA, V _E =0.5V, V _{CC} =5.5V	-	9	13	mA	
Іссн	Logic High Supply Current	I _F =0mA, V _E =0.5V, V _{CC} =5.5V	-	6	10	mA	
V _{EH}	High Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	2.0	-	-	V	
VEL	Low Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	-	-	0.8	V	
I _{EH}	High Level Enable Current	V _E =2.0V, V _{CC} =5.5V	-	-0.53	-1.6	mA	
I _{EL}	Low Level Enable Current	V _E =0.5V, V _{CC} =5.5V	-	-0.75	-1.6	mA	

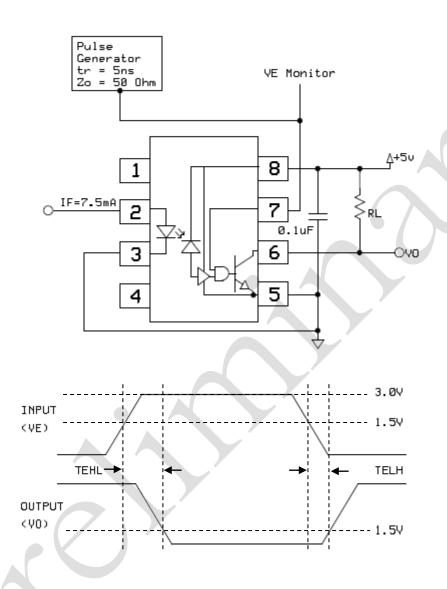
Transfer Characteristics


Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Іон	Logic High Output Current	I _F =250uA, V _O = V _{CC} = 5.5V,	_	2	100	uA	
ЮН		V _E =2.0V		2	100		
l	Innut Throphold Current	V _{CC} =5.5V, V _O =0.6V, V _E =2.0V		3.3	5	mA	
IFT	Input Threshold Current	I _O =13mA	- 3	3.3	3	IIIA	
Ve	Logic Low Output Voltage	I _F =5mA, V _{CC} =5.5V, V _E =2.0V,		0.35	0.6	V	
V _{OL} Lo	Logic Low Output Voltage	Io=13mA	-	0.35	0.6	V	



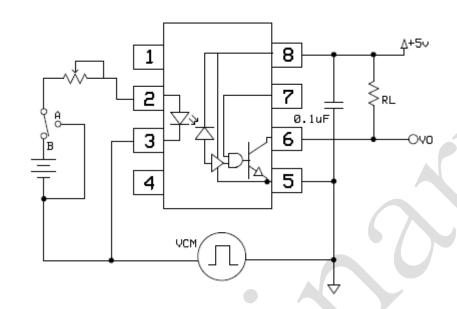
Switching Characteristics

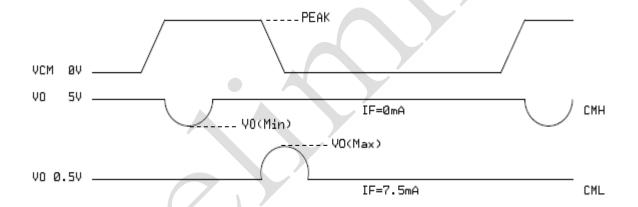
Symbol	Parameter	rs	Test Conditions	Min	Тур	Max	Units	Notes
Трнь	Propagation Delay Tin	me Logic		-	34	75	ns	
T _{PLH}	Propagation Delay Tin	me Logic	C _L =15pF,R _L =350Ω	ı	39	75	ns	
Pwd	Pulse Width Distortion	1		-	5	34	ns	
Tr	Output Rise Time			-	40	A -	ns	
Tf	Output Fall Time			-	10	-	ns	
T _{ELH}	Enable Propagation D	Delay Low	VEH= 3.5V, C _L = 15pF, R _L =		15)	ns	
T _{EHL}	Enable Propagation D	Delay High	350Ω		15	-	ns	
		CT0600	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=10Vp-p		-	-		
СМн	Common Mode Transient Immunity at Logic High	CT0601	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=50Vp-p	5000	-	-	V/µs	
		CT0611	IF = 0mA , VoH=2.0V, RL=350Ω, TA=25°C, VcM=1000Vp-p	15000	-	,		
		CT0600	I _F = 7.5mA , Vo _L =0.8V, R _L =350Ω, TA=25°C, V _{CM} =10Vp-p	-	-	-		
CML	Common Mode Transient Immunity at Logic Low	CT0601	IF = 7.5mA , VoL=0.8V, RL=350Ω, TA=25°C, VcM=50Vp-p	5000	-	-	V/µs	
		CT0611	IF = 7.5mA , VoL=0.8V, RL=350Ω, TA=25°C, VcM=1000Vp-p	15000	-	-		


Test Circuit

Switching Time Test Circuit

Test Circuit

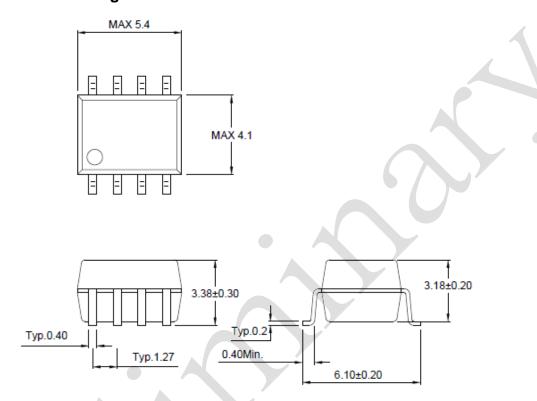


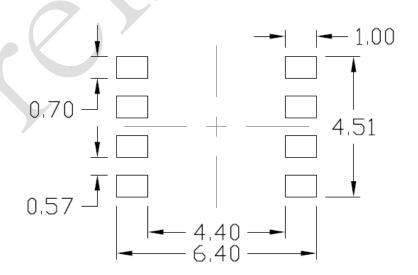

Enable Switching Time Test Circuit

Rev 0.5

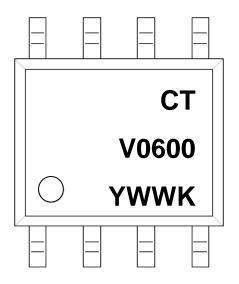
Sep, 2021

Test Circuit




CMR Test Circuit

Package Dimension Dimensions in mm unless otherwise stated


Surface Mount Lead Forming

Recommended Solder Mask Dimensions in mm unless otherwise stated

Marking Information

Note:

CT : Denotes "CT Micro"

0600 : Part Number (0600, 0601, 0611)

V : VDE Safety Mark Option (Blank or V)

Y : One Digit Year Code
WW : Two Digit Work Week
K : Manufacturing Code

Ordering Information

CT06XX(V)(Z)

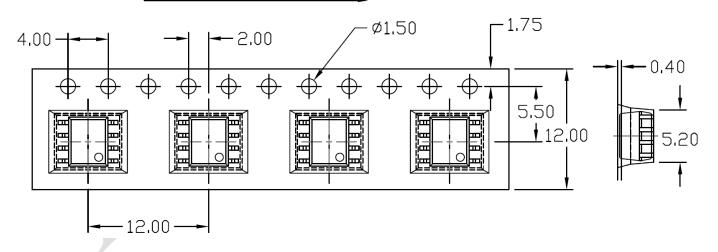
CT = Denotes "CT Micro"

06XX = Part Number (XX = 00, 01, or 11)

V = VDE Option (V or none)

Z = Tape and Reel Option (T1 or T2)

Option	Description	Quantity
T1	Surface Mount Lead Forming – With Option 1 Taping	1,200 Units/Reel
T2	Surface Mount Lead Forming – With Option 2 Taping	1,200 Units/Reel


Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option T1

Option T2

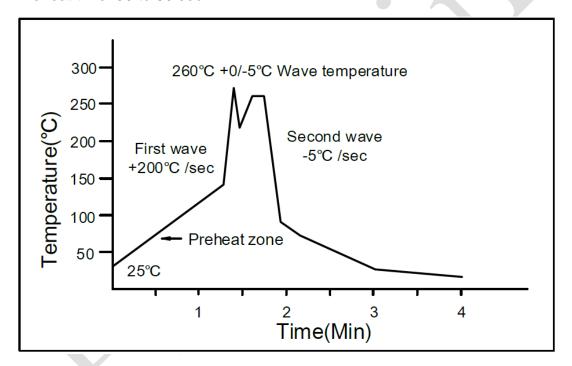
Input Direction

Solderability Specification (follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave Soldering (follow the JEDEC standard JESD22-A111)


One time soldering is recommended within the condition of temperature.

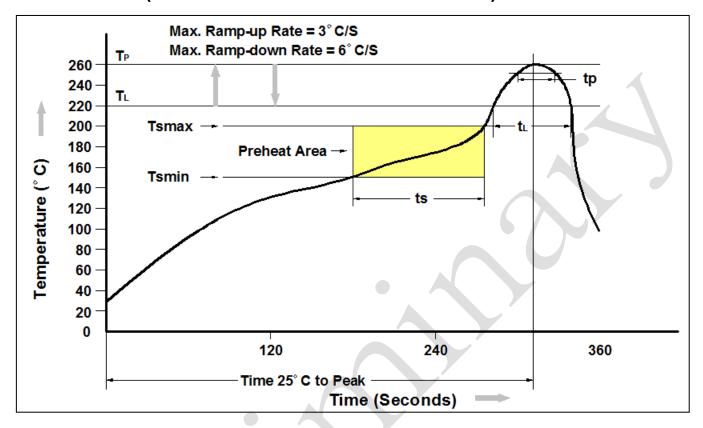
Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature: 25 to 140°C.

Preheat time: 30 to 80 sec.

Iron Soldering (follow the standard MIL-STD 202G, Method 210F)


Allow single lead soldering in every single process.

One time soldering is recommended.

Temperature: 350±10°C

Time: 5 sec max.

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

DMC-Isolator® IS A TRADEMARK OF CT MICRO INTERNATIONAL CORPORATION AND/OR ITS SUBSIDIARIES. CT MICRO OWNS THE RIGHTS TO A NUMBER OF PATENTS, TRADEMARKS, COPYRIGHTS AND OTHER INTELLECTUAL PROPERTY.

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness