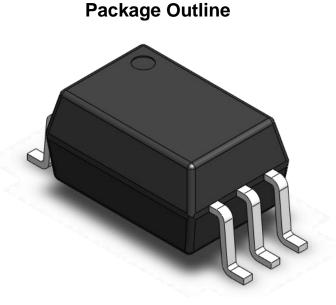


## Features

- High speed 1MBit/s
- High isolation voltage between input and output (VISO=5000 VRMS)
- Guaranteed CTR performance from 0°C to 70°C
- Operating Temperature range 55 °C to 110 °C
- **RoHS and REACH Compliance**
- MSL class 1
- **Regulatory Approvals** 
  - ✓ UL - UL1577 (E364000)
  - $\checkmark$ VDE - EN60747-5-5(VDE0884-5)
  - CQC GB4943.1, GB8898(14001104999) 1
  - ~ IEC62368 (FI/41119)


# Description

The CTS452 and CTS453 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor.

A separate connection for the photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor.


# **Applications**

- Isolated IGBT/Power MOSFET gate drive
- Industrial Inverter
- AC brushless and DC motor drives
- Induction Heating



Note: Different bending options available. See package dimension.

# **Schematic**



# **Truth Table**

| Input | Output |
|-------|--------|
| Off   | High   |
| On    | Low    |



# CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler

#### Absolute Maximum Ratings $T_A = 25^{\circ}C$ , unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                | Parameters                                      | Ratings    | Units | Notes |
|-----------------------|-------------------------------------------------|------------|-------|-------|
| Viso                  | Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.) | 5000       | Vrms  |       |
| TOPR                  | Operating temperature                           | -55 ~ +100 | °C    |       |
| Tstg                  | Storage temperature                             | -55 ~ +125 | °C    |       |
| Tsol                  | Soldering temperature (For 10 seconds)          | 260        | °C    |       |
| Emitter               |                                                 |            |       |       |
| lF                    | Forward current                                 | 25         | mA    |       |
| I <sub>FP</sub>       | Peak forward current (50% duty, 1ms P.W)        | 50         | mA    |       |
| IF(TRANS)             | Peak transient current (≤1µs P.W,300pps)        | 1          | А     |       |
| VR                    | Reverse voltage                                 | 5          | V     |       |
| PD                    | Power dissipation                               | 40         | mW    |       |
| Detector              |                                                 |            |       |       |
| PD                    | Power dissipation                               | 100        | mW    |       |
| V <sub>EBR</sub>      | Emitter-Base reverse voltage                    | 5          | V     |       |
| lв                    | Base current                                    | 5          | mA    |       |
| IO(AVG)               | Average Output current                          | 8          | mA    |       |
| I <sub>O (Peak)</sub> | Peak Output current                             | 16         | mA    |       |
| Vo                    | Output voltage                                  | -0.5 to 20 | V     |       |
| Vcc                   | Supply voltage                                  | -0.5 to 30 | V     |       |



**Electrical Characteristics**  $T_A = 0 - 70^{\circ}C$  (unless otherwise specified). Typical values are measured at  $T_A = 25^{\circ}C$  and  $V_{cc} = 5V$ 

#### **Emitter Characteristics**

| Symbol                    | Parameters                                 | Test Conditions | Min | Тур  | Max | Units | Notes |
|---------------------------|--------------------------------------------|-----------------|-----|------|-----|-------|-------|
| VF                        | Forward voltage                            | IF = 16mA       | -   | 1.45 | 1.6 | V     |       |
| VR                        | Reverse Voltage                            | IR = 10µA       | 5.0 | -    | -   | V     |       |
| $\Delta V_F / \Delta T_A$ | Temperature coefficient of forward voltage | IF =16mA        | -   | -1.8 | -   | mV/°C |       |

#### **Detector Characteristics**

| Symbol | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Conditions                | Min  | Тур   | Max | Units | Notes |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|-------|-----|-------|-------|
|        | $I_{\text{F}}=0\text{mA}, V_{\text{O}}=V_{\text{CC}}=5.5\text{V}, \\ T_{\text{A}}=25^{\circ}\text{C} \\ I_{\text{F}}=0\text{mA}, V_{\text{O}}=V_{\text{CC}}=15\text{V}, \\ T_{\text{A}}=25^{\circ}\text{C} \\ I_{\text{F}}=25^{\circ}\text{C} \\ I_{\text{F}}=0\text{mA}, V_{\text{O}}=V_{\text{CC}}=15\text{V}, \\ I_{\text{F}}=25^{\circ}\text{C} \\ I_{\text{F}}=25^{$ | IF=0mA, Vo=Vcc=5.5V,           | -    | 0.001 | 0.5 | μA    |       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>A</sub> =25°C           |      |       |     |       |       |
| Іон    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF=0mA, Vo=Vcc=15V,            |      | 0.01  | 1   |       |       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                              | 0.01 | I     |     |       |       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF=0mA, Vo=Vcc=15V             | -    | -     | 50  |       |       |
| loo    | Lagis Law Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I <sub>F</sub> =16mA, V₀=Open, | -    | 140   | 200 | μΑ    |       |
| ICCL   | Logic Low Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub> =15V           |      |       |     |       |       |
|        | Iccн Logic High Supply Current IF=0mA, Vo=Open, Vcc=15V,<br>T <sub>A</sub> =25°C<br>IF=0mA, VO=Open,<br>VCC=15V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | 0.01 | 1     |     |       |       |
| lagu   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>A</sub> =25°C           | -    | 0.01  | I   | μA    |       |
| ICCH   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF=0mA, VO=Open,               | -    | -     | 2   |       |       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VCC=15V                        |      |       |     |       |       |

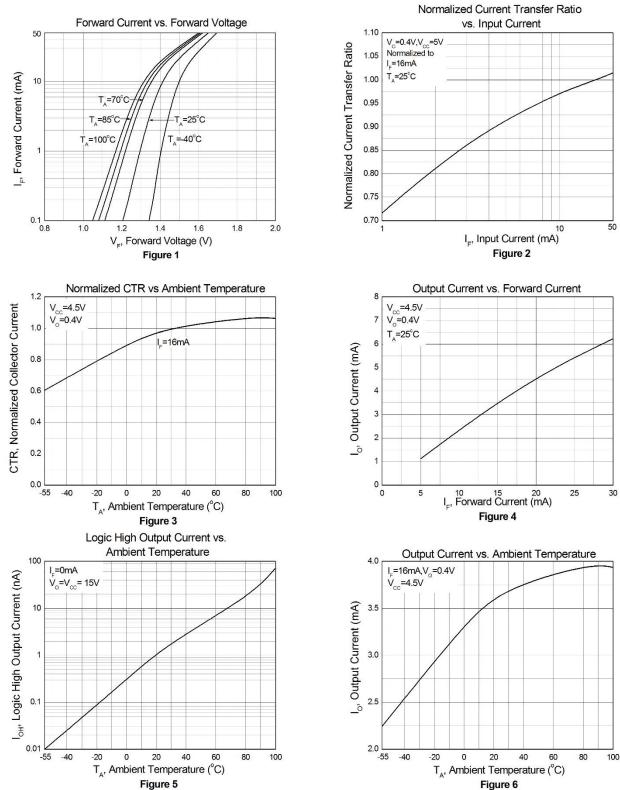


**Electrical Characteristics**  $T_A = 0 - 70^{\circ}$ C (unless otherwise specified). Typical values are measured at  $T_A = 25^{\circ}$ C and  $V_{cc} = 5V$ 

| Symbol | Parameters               | Test Conditions                              | Min | Тур | Max | Units | Notes |
|--------|--------------------------|----------------------------------------------|-----|-----|-----|-------|-------|
|        | Current Transfer Ratio   | I <sub>F</sub> =16mA, V <sub>O</sub> =0.4V,  | 20  | -   | 50  | %     |       |
|        |                          | V <sub>CC</sub> =4.5V, T <sub>A</sub> =25°C  |     |     |     |       |       |
|        |                          | IF=16mA, Vo=0.5V,                            | 45  | -   | -   |       |       |
| СТР    |                          | Vcc=4.5V                                     | 15  |     |     |       |       |
| CTR    |                          | I <sub>F</sub> =16mA, V <sub>O</sub> =0.4V,  | 10  |     | 51  |       |       |
|        |                          | V <sub>CC</sub> =3.3V, T <sub>A</sub> =25°C  | 18  |     |     |       |       |
|        |                          | I <sub>F</sub> =16mA, V <sub>O</sub> =0.5V,  | 13  | -   | -   |       |       |
|        |                          | Vcc=3.3V                                     |     |     |     |       |       |
|        | Logic Low Output Voltage | $I_F=16mA$ , $I_O=3mA$ , $V_{CC}=4.5V$ ,     | -   | -   | 0.4 | - V   |       |
|        |                          | T <sub>A</sub> =25°C                         |     |     |     |       |       |
|        |                          | IF=16mA, Io=3mA, Vcc=3.3V,                   | -   | -   | 0.4 |       |       |
| Vol    |                          | T <sub>A</sub> =25°C                         |     |     |     |       |       |
| VOL    |                          | IF=16mA, Io=2.4mA,                           | -   | -   | 0.5 |       |       |
|        |                          | V <sub>CC</sub> =4.5V                        |     |     |     |       |       |
|        |                          | I <sub>F</sub> =16mA, I <sub>O</sub> =2.4mA, | _   | -   | 0.5 |       |       |
|        |                          | V <sub>CC</sub> =3.3V                        | -   |     |     |       |       |

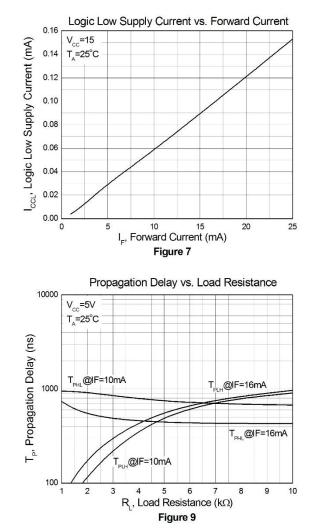
#### **Transfer Characteristics**



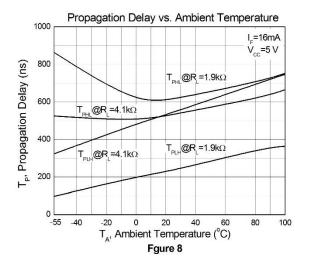

**Electrical Characteristics**  $T_A = 0 - 70^{\circ}C$  (unless otherwise specified). Typical values are measured at  $T_A = 25^{\circ}C$  and  $V_{cc} = 5V$ 

#### Symbol **Parameters Test Conditions** Min Max Units Notes Тур $I_F=16mA$ , $R_L=1.9K\Omega$ , 0.35 0.8 \_ T<sub>A</sub>=25°C $I_F=16mA, R_L=1.9K\Omega$ 1.0 --Propagation Delay Time Logic High TPHL I<sub>F</sub>=16mA, V<sub>CC</sub>=3.3V μs to Logic Low 0.4 1 $R_L=1.9K\Omega$ , $T_A=25^{\circ}C$ IF=16mA, Vcc=3.3V 1.4 \_ R∟=1.9KΩ $I_F=16mA$ , $R_L=1.9K\Omega$ , 0.3 0.8 -T<sub>A</sub>=25°C $I_F=16mA$ , $R_L=1.9K\Omega$ -1.0 -Propagation Delay Time Logic Low TPLH IF=16mA, Vcc=3.3V μs to Logic High \_ 1.5 \_ $R_L=1.9K\Omega$ , $T_A=25^{\circ}C$ IF=16mA, Vcc=3.3V \_ \_ 2.0 $R_L=1.9K\Omega$ $I_F = 0 \text{mA}$ , $V_{CM} = 10 \text{Vp-p}$ , CTS452 Common Mode 5,000 \_ \_ $R_L=1.9K\Omega$ , $T_A=25^{\circ}C$ СМн Transient Immunity at V/µs $I_F = 0 m A$ , $V_{CM} = 1500 V p - p$ , Logic High CTS453 15,000 \_ $R_L=1.9K\Omega$ , $T_A=25^{\circ}C$ $I_F = 16mA$ , $V_{CM}=10Vp-p$ , Common Mode CTS452 5,000 -\_ RL=1.9KΩ. TA=25°C Transient Immunity at CM∟ V/µs $I_F = 16mA$ , $V_{CM}=1500Vp-p$ , CTS453 Logic Low 15,000 -\_ $R_L=1.9K\Omega$ , $T_A=25^{\circ}C$

#### Switching Characteristics




# CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler




## Typical Characteristic Curves T<sub>A</sub> = 25°C, unless otherwise specified





### Typical Characteristic Curves T<sub>A</sub> = 25°C, unless otherwise specified





CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler

# **Test Circuits**

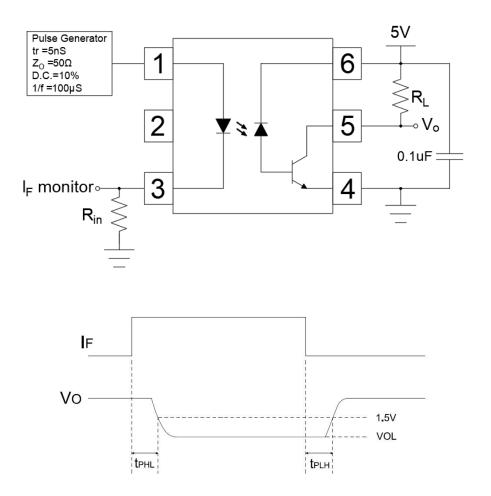



Figure 10: Switching Time Test Circuit



CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler

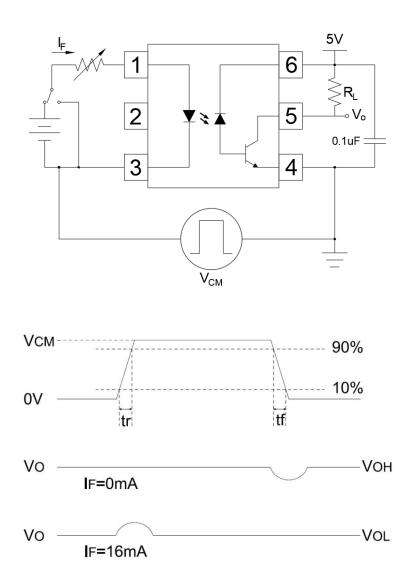
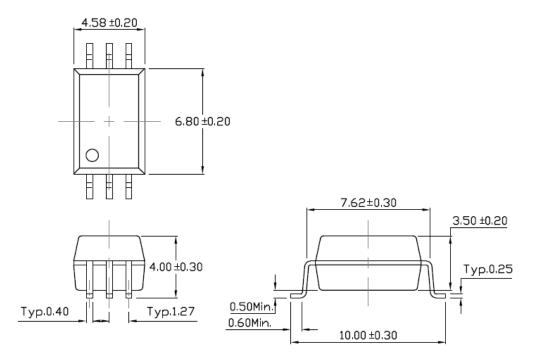
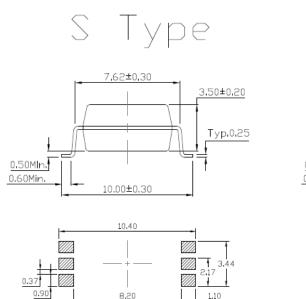
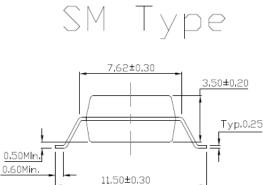




Figure 11: CMR Test Circuit





### Package Dimension Dimensions in mm unless otherwise stated

#### **Surface Mount Lead Forming**



### Forming Option Dimensions in mm unless otherwise stated









# CTS452, CTS453

SDIP-61 Mbit/s High SpeedTransistor Coupler

: Denotes "CT Micro"

: One Digit Year Code

: Two Digit Work Week

: Manufacturing Code

: VDE Safety Mark Option (Blank or V)

: Part Number

Note: СТ

453

V

Y

Κ

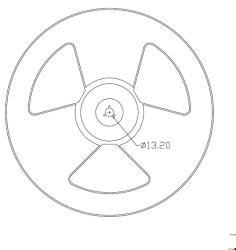
WW

# **Marking Information**



# **Ordering Information**

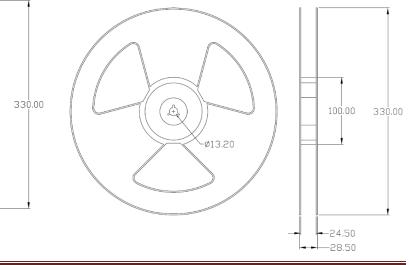
# CTS45X(V)(Y)(Z)


Υ


- CT = Denotes "CT Micro"
  - Х = Part Number(2, 3)
  - V = VDE Safety Mark Option (Blank or V)
    - = Lead Form Option (Blank, M)
- Ζ = Tape and Reel Option (T1, T2)

#### Option Description Quantity S(T1) Surface Mount Lead Forming with Option 1 Taping 1500 Units/Reel S(T2) Surface Mount Lead Forming with Option 2 Taping 1500 Units/Reel SM(T1) Surface Mount (Gullwing) Lead Forming with Option 1 Taping 1500 Units/Reel SM(T2) Surface Mount (Gullwing) Lead Forming with Option 2 Taping 1500 Units/Reel

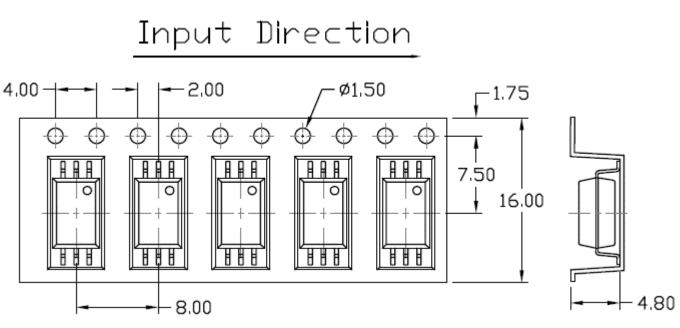
### Reel Dimension All dimensions are in mm, unless otherwise stated


#### Option S(T1/T2)

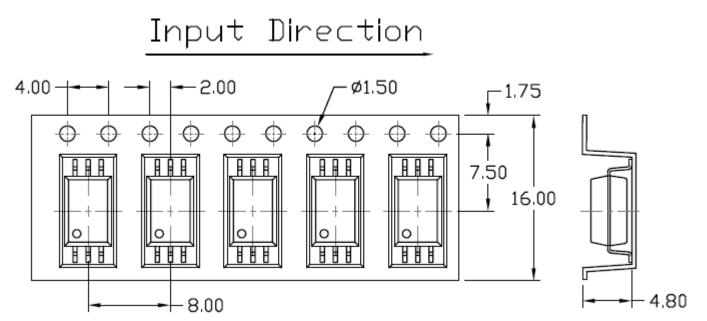




-20.50


#### Option SM(T1/T2)

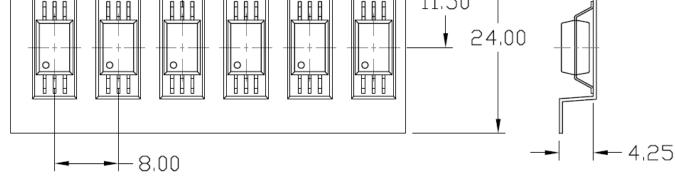





### Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1)




**Option S(T2)** 



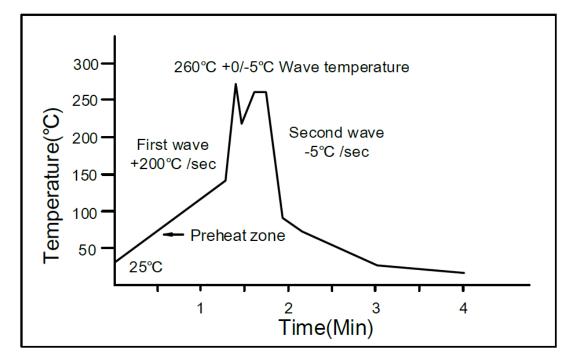


CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler

**Option SM (T1)** Input Direction -1,75 4.00--2.00 -ø1,50 ( $\oplus$  $\Diamond$  $\ominus$  $\oplus$  $\oplus$  $\oplus$ ⊕ 11,50 A A 88 H 24,00 4,25 **Option SM (T2)** Input Direction -1.75 -ø1.50 -2.00 4,00-- $\odot$ 0  $\oplus$  $\oplus$ ÷  $\oplus$ ⊕ 11.50





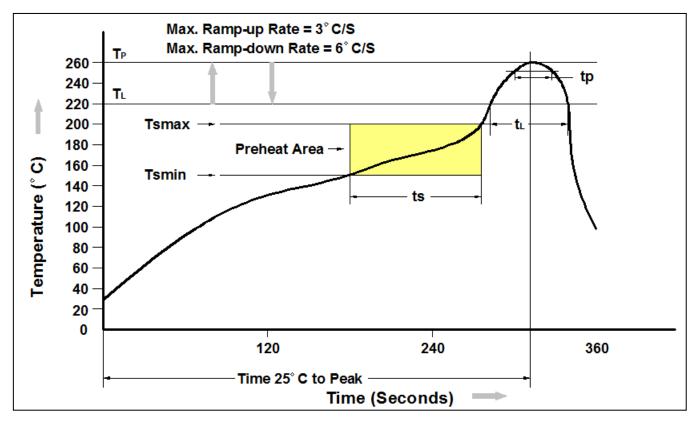

# Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

# Wave soldering (Follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5°C. Time: 10 sec. Preheat temperature: 25 to 140°C. Preheat time: 30 to 80 sec.




# Iron soldering (Follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350±10°C Time: 5 sec max.



## **Reflow Profile (Follow the JEDEC standard J-STD-020)**



| Profile Feature                                           | Pb-Free Assembly Profile |
|-----------------------------------------------------------|--------------------------|
| Temperature Min. (Tsmin)                                  | 150°C                    |
| Temperature Max. (Tsmax)                                  | 200°C                    |
| Time (ts) from (Tsmin to Tsmax)                           | 60-120 seconds           |
| Ramp-up Rate (t∟ to t <sub>P</sub> )                      | 3°C/second max.          |
| Liquidous Temperature (TL)                                | 217°C                    |
| Time (t <sub>L</sub> ) Maintained Above (T <sub>L</sub> ) | 60 – 150 seconds         |
| Peak Body Package Temperature                             | 260°C +0°C / -5°C        |
| Time (t <sub>P</sub> ) within 5°C of 260°C                | 30 seconds               |
| Ramp-down Rate $(T_P \text{ to } T_L)$                    | 6°C/second max           |
| Time 25°C to Peak Temperature                             | 8 minutes max.           |



# CTS452, CTS453 SDIP-61 Mbit/s High SpeedTransistor Coupler

#### DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.