ESMT

2x20W Stereo / 1x40W Mono Digital Audio Amplifier With 30 bands EQ and DRC Functions + 2Vrms Line Driver

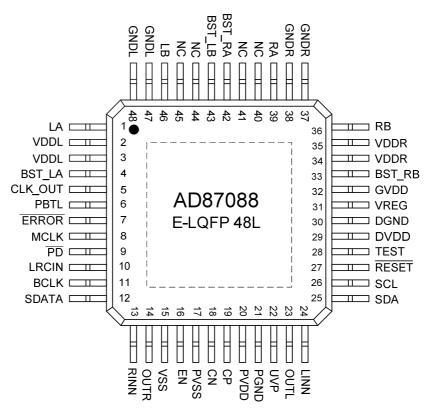
Features

- Supply voltage
 3.3V for digital circuit
 8V~26V for loudspeaker driver
- Supports 2.0CH/Mono configuration
- Loudspeaker output power@12V for stereo
 7W x 2CH into 8Ω <1% THD+N
 10W x 2CH into 4Ω <1% THD+N
- Loudspeaker output power@18V for stereo 15W x 2CH into 8Ω <1% THD+N
- Loudspeaker output power@24V for stereo 20W x 2CH into 8Ω <1% THD+N
- 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- Multiple sampling frequencies (Fs) 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 MCLK system:
 - 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz 64x~512x Fs for 64kHz / 88.2kHz / 96kHz 64x~256x Fs for 128kHz / 176.4kHz / 192kHz <u>BCLK system:</u>

64xFs for 32kHz / 44.1kHz / 48kHz 64xFs for 64kHz / 88.2kHz / 96kHz 64xFs for 128kHz / 176.4kHz / 192kHz

 Sound processing including : 30 bands parametric speaker EQ Volume control (+24dB~-103dB, 0.125dB/step) Dynamic range control Three Band plus post Dynamic range control Power Clipping Programmed 3D surround sound Channel mixing Noise gate with hysteresis window Bass/Treble tone control DC-blocking high-pass filter Pre-scale/post-scale

- Supports I²C control without clock
- I²C control interface with selectable device address
- Support hardware and software reset
- Internal PLL
- Anti-pop design
- Level meter and power meter
- LV Under-voltage shutdown and HV Under-voltage detection
- Over voltage protection
- Short circuit and over-temperature protection


Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

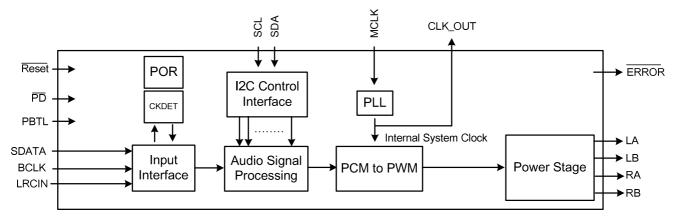
Description

The AD87088 is an integrated audio system solution, embedding digital audio process, power stage amplifier and a stereo 2Vrms line driver. AD87088 is a digital audio amplifier capable of driving a pair of 8 Ω , 20W or a single 4 Ω , 40W operating at 24V supply. AD87088 provides advanced audio processing functions, such as volume control, 30 EQ bands, audio mixing, 3D surround sound and Dynamic Range Control (DRC). These are fully programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD87088 from damage due to accidental erroneous operating condition. The full digital circuit design of AD87088 is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog class-AB or class-D audio amplifier counterpart implemented by analog circuit design. AD87088 is pop free during instantaneous power on/off or mute/shut down switching because of its robust built-in anti-pop circuit.

Pin Assignment

Pin Description (E-LQFP 48L)

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	LA	0	Left channel output A.	
2	VDDL	Р	Left channel supply.	
3	VDDL	Р	Left channel supply.	
4	BST_LA	Р	Bootstrap supply for left channel output A.	
5	CLK_OUT	O/I	PLL ratio setting pin during power up, this pin is monitored on the rising edge of reset. PMF register will be default set at 1 or 16 times PLL ratio. High: PMF [3:0] = [0000], 1 time of PLL ratio to avoid system BCLK over flow. Low: PMF [3:0] = [0001], 16 times of PLL ratio. This pin could be clock output pin also during normal operating if EN_CLK_OUT register bit is enabled.	TTL output buffer, internal pull Low with a 100Kohm resistor.
6	PBTL	Ι	Stereo/Mono configuration pin. (Low: Stereo ; High: Mono)	


7 FROR FROR pin is a dual function pin. One is if C This pin is monitored on the rising address setting during power up. The other edge of reset. A value of Low (15-KQ one is error status report (low active), It sets pull down) sets the if C device by register of A_SEL_FAULT at address 7 ERROR I/O one is error status report (low active), It sets pull down) sets the if C device by register of A_SEL_FAULT at address address to Ko30 and a value of High (15-KQ pull up) sets it to 0x31. 8 MCLK I Master clock input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 9 PpD I Power down, low active. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 10 LRCIN I Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 11 BCLK I Bit clock input (64Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 12 SDATA I Serial audio data input. Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 13 RINN I Right output for line driver Internal pull Low with an 80Kohm resistor. 14 OUTR O Right o					
7 FROR I/O one is error status report (low active), It sets pull down) sets the I ² C device address to 0x30 and a value of High 0x1C B[6] to enable it. address to 0x30 and a value of High 0x1C B[6] to enable it. 8 MCLK I Master clock input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 9 PD I Power down, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm resistor. 10 LRCIN I Left/Right clock input (FS). Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 11 BCLK I Bit clock input (FS). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 12 SDATA I Bit clock input (64FS). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 13 RINN I Right input for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 14 OUTR O Right output for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 15 VSS P Ground for line driver Schmitt trigger TTL input buffer, connection for line driver 16 EN I Enable for line driver				$\overline{\text{ERROR}}$ pin is a dual function pin. One is I^2C	This pin is monitored on the rising
Image: Section of A_SEL_FAULT at address address to 0x30 and a value of High (15-kΩ pull up) sets it to 0x31. 8 MCLK I Master clock input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 9 PpD I Power down, low active. Schmitt trigger TTL input buffer, internal pull ligh with a 330Kohm resistor. 10 LRCIN I Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 11 BCLK I Bit clock input (64Fs). Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 12 SDATA I Serial audio data input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 13 RINN I Right input for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 14 OUTR O Right output for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 15 VSS P Ground for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 16 EN I Right input for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 17 PVSS P Ground for line driver Internal pull Low with an 80Kohm resistor.				address setting during power up. The other	edge of reset. A value of Low (15-k Ω
Image: Constraint of the set of the se	7	ERROR	I/O	one is error status report (low active), It sets	pull down) sets the I ² C device
8 MCLK 1 Master clock input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 9 PD 1 Power down, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm resistor. 10 LRCIN 1 Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 11 BCLK 1 Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 12 SDATA 1 Serial audio data input. Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 12 SDATA 1 Serial audio data input. Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 13 RINN 1 Right uput for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 14 OUTR O Right uput for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 15 VSS P Ground for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 16 EN 1 Enable for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 17 PVSS P Supply voltage for line driver Schmitt trigger TT				by register of A_SEL_FAULT at address	address to 0x30 and a value of High
8 MCLK I Master clock input. Internal pull Low with a 80Kohm resistor. 9 Pp I Power down, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm resistor. 10 LRCIN I Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 11 BCLK I Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 12 SDATA I Setral audio data input. Schmitt trigger TTL input buffer, internal pull Low with a 80Kohm resistor. 13 RINN I Right input for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 14 OUTR O Right input for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 15 VSS P Ground for line driver Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 16 EN I Enable for line driver Internal pull Low with an 80Kohm resistor. 17 PVSS P Supply voltage for line driver Internal pull Low with an 80Kohm resistor. 18 CN I/O				0x1C B[6] to enable it.	(15-kΩ pull up) sets it to 0x31.
Image: select of the select					Schmitt trigger TTL input buffer,
9PDIPower down, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm resistor.10LRCINILeft/Right clock input (Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.11BCLKILeft/Right clock input (Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.12SDATAIBerial audio data input.Schmitt trigger TTL input buffer internal pull Low with an 80Kohm resistor.12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driverSchmitt trigger TTL input buffer14OUTRORight unput for line driverImage: Common comm	8	MCLK	I	Master clock input.	internal pull Low with a 80Kohm
9 PD I Power down, low active. internal pull High with a 330Kohm resistor. 10 LRCIN I Left/Right clock input (Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 11 BCLK I Left/Right clock input (64Fs). Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor. 12 SDATA I Serial audio data input. Schmitt trigger TTL input buffer 13 RINN I Right input for line driver Schmitt trigger TTL input buffer 14 OUTR O Right output for line driver Image: Schmitt trigger TTL input buffer 15 VSS P Ground for line driver Image: Schmitt trigger TTL input buffer 16 EN I Right output for line driver Image: Schmitt trigger TTL input buffer 17 PVSS P Ground for line driver Image: Schmitt trigger TTL input buffer 18 CN I/O Charge pump flying capacitor positive connection for line driver Image: Schmitt trigger TTL input buffer 19 CP I/O Charge pump flying capacitor positive connection for line driver Image: Schmitt trigger TTL input buffer					resistor.
Image: section of the section of th					Schmitt trigger TTL input buffer,
10LRCINILeft/Right clock input (Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.11BCLKIBit clock input (64Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driverSchmitt trigger TTL input buffer14OUTRORight output for line driverImage: Schmitt trigger TTL input buffer15VSSPGround for line driverImage: Schmitt trigger TTL input buffer16ENIEnable for line driverImage: Schmitt trigger TTL input buffer18CNI/OCharge pump flying capacitor negative connection for line driverImage: Schmitt trigger TTL input buffer19CPI/OCharge pump flying capacitor positive connection for line driverImage: Schmitt trigger TTL input buffer20PVDDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer21PGNDPGround for line driverImage: Schmitt trigger TTL input buffer22UVPIUnder voltage protection for line driverImage: Schmitt trigger TTL input buffer23OUTLOLeft output for Line driverImage: Schmitt trigger TTL input buffer24LINNILeft input for Line driverImage: Schmitt trigger TTL input buffer25SDAI/OI ² C bi-directional serial data.Schmitt trigger TTL inpu	9	PD	I	Power down, low active.	internal pull High with a 330Kohm
10LRCINILeft/Right clock input (Fs).internal pull Low with an 80Kohm resistor.11BCLKIBit clock input (64Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driverSchmitt trigger TTL input buffer14OUTRORight output for line driverImage: Schmitt trigger TTL input buffer15VSSPGround for line driverImage: Schmitt trigger TTL input buffer16ENIEnable for line driverImage: Schmitt trigger TTL input buffer18CNI/OCharge pump flying capacitor negative connection for line driverImage: Schmitt trigger TTL input buffer19CPI/OCharge pump flying capacitor positive connection for line driverImage: Schmitt trigger TTL input buffer20PVDDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer21PGNDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer22UVPIUnder voltage protection for line driverImage: Schmitt trigger TTL input buffer23OUTLOLeft unput for Line driverImage: Schmitt trigger TTL input buffer24LINNILeft input for Line driverSchmitt trigger TTL input buffer25SDAI/OI ² Cb-idriectional serial data.Schmitt trigger TTL input buffer26S					resistor.
Image: Answer and the second					Schmitt trigger TTL input buffer,
11BCLKIBit clock input (64Fs).Schmitt trigger TTL input buffer, internal pull Low with an 80Kohm resistor.12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driverSchmitt trigger TTL input buffer14OUTRORight output for line driverImage: Schmitt trigger TTL input buffer15VSSPGround for line driverImage: Schmitt trigger TTL input buffer16ENIEnable for line driverImage: Schmitt trigger TTL input buffer18CNI/OCharge pump flying capacitor negative connection for line driverImage: Schmitt trigger TTL input buffer19CPI/OCharge pump flying capacitor positive connection for line driverImage: Schmitt trigger TTL input buffer20PVDDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer21PGNDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer22UVPIUnder voltage protection for line driverImage: Schmitt trigger TTL input buffer23OUTLOLeft output for Line driverSchmitt trigger TTL input buffer24LINNILeft input for Line driverSchmitt trigger TTL input buffer25SDAI/OI ² C serial clock input.Schmitt trigger TTL input buffer26SCLII ² C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, l	10	LRCIN	I	Left/Right clock input (Fs).	internal pull Low with an 80Kohm
11BCLKIBit clock input (64Fs).internal pull Low with an 80Kohm resistor.12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driverSchmitt trigger TTL input buffer14OUTRORight output for line driverImage: Schmitt trigger TTL input buffer15VSSPGround for line driverImage: Schmitt trigger TTL input buffer16ENIEnable for line driverImage: Schmitt trigger TTL input buffer17PVSSPSupply voltage for line driverImage: Schmitt trigger TTL input buffer18CNI/OCharge pump flying capacitor negative connection for line driverImage: Schmitt trigger TTL input buffer19CPI/OCharge pump flying capacitor positive connection for line driverImage: Schmitt trigger TTL input buffer20PVDDPSupply voltage for line driverImage: Schmitt trigger TTL input buffer21PGNDPGround for line driverImage: Schmitt trigger TTL input buffer22UVPIImage: Under voltage protection for line driverImage: Schmitt trigger TTL input buffer23OUTLOLeft input for Line driverSchmitt trigger TTL input buffer24LINNILeft output for Line driverSchmitt trigger TTL input buffer25SDAI/OI ² C bi-directional serial data.Schmitt trigger TTL input buffer26SCLIIReset, low active. </td <td></td> <td></td> <td></td> <td></td> <td>resistor.</td>					resistor.
Image: Non-Section of the section o					Schmitt trigger TTL input buffer,
12SDATAISerial audio data input.Schmitt trigger TTL input buffer13RINNIRight input for line driver14OUTRORight output for line driver15VSSPGround for line driver16ENIEnable for line driver17PVSSPSupply voltage for line driver18CNI/OCharge pump flying capacitor negative connection for line driver19CPI/OCharge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driverInternally pulled high23OUTLOLeft output for Line driver24LINNILeft input for Line driverSchmitt trigger TTL input buffer25SDAI/OI²C bridirectional serial data.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer	11	BCLK	Ι	Bit clock input (64Fs).	internal pull Low with an 80Kohm
13RINNIRight input for line driverSolution14OUTRORight output for line driverImage: Solution of the driver15VSSPGround for line driverImage: Solution of the driver16ENIEnable for line driverImage: Solution of the driver17PVSSPSupply voltage for line driverImage: Solution of the driver18CNI/OCharge pump flying capacitor negative connection for line driverImage: Solution of the driver19CPI/OCharge pump flying capacitor positive connection for line driverImage: Solution of the driver20PVDDPSupply voltage for line driverImage: Solution of the driver21PGNDPGround for line driverImage: Solution of the driver22UVPIUnder voltage protection for line driverImage: Solution of the driver23OUTLOLeft output for Line driverImage: Solution of the driver24LINNILeft input for Line driverSchmitt trigger TTL input buffer25SDAI/OI²C serial clock input.Schmitt trigger TTL input buffer26SCLIIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm					resistor.
14OUTRORight output for line driver15VSSPGround for line driver16ENIEnable for line driver17PVSSPSupply voltage for line driver18CNI/OCharge pump flying capacitor negative connection for line driver19CPI/OCharge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C serial clock input.26SCLII²C serial clock input.27RESETIReset, low active.27RESETIReset, low active.	12	SDATA	I	Serial audio data input.	Schmitt trigger TTL input buffer
15VSSPGround for line driver16ENIEnable for line driver17PVSSPSupply voltage for line driver18CN l/O Charge pump flying capacitor negative connection for line driver19CP l/O Charge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/O l^2 C bi-directional serial data.Schmitt trigger TTL input buffer26SCLI l^2 C serial clock input.Schmitt trigger TTL input buffer	13	RINN	Ι	Right input for line driver	
16ENIEnable for line driverImage: Constraint of the transmission of the transmission of the transmission of the transmission of transmissi	14	OUTR	0	Right output for line driver	
17PVSSPSupply voltage for line driver18CNI/OCharge pump flying capacitor negative connection for line driver19CPI/OCharge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPSupply voltage for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C serial clock input.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	15	VSS	Р	Ground for line driver	
18CNI/OCharge pump flying capacitor negative connection for line driver19CPI/OCharge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C bi-directional serial data.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	16	EN	I	Enable for line driver	
18CNI/Oconnection for line driver connection for line driver19CPI/OCharge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C bi-directional serial data.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	17	PVSS	Р	Supply voltage for line driver	
Image: Connection for line driverConnection for line driver19CPI/OCharge pump flying capacitor positive connection for line driverImage: Charge pump flying capacitor positive connection for line driver20PVDDPSupply voltage for line driverImage: Charge pump flying capacitor positive connection for line driver21PGNDPSupply voltage for line driverImage: Charge pump flying capacitor positive connection for line driver22UVPIGround for line driverInternally pulled high23OUTLOLeft output for Line driverImage: Charge pump flying capacitor positive connection for line driver24LINNILeft input for Line driverSchmitt trigger TTL input buffer25SDAI/OI²C serial clock input.Schmitt trigger TTL input buffer26SCLIIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	18	CN	1/0	Charge pump flying capacitor negative	
19CPI/Oconnection for line driver20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C bi-directional serial data.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	10	CN	1/0	connection for line driver	
20PVDDPSupply voltage for line driver21PGNDPGround for line driver22UVPIUnder voltage protection for line driver23OUTLOLeft output for Line driver24LINNILeft input for Line driver25SDAI/OI²C bi-directional serial data.26SCLII²C serial clock input.27RESETIReset, low active.	10	CP	1/0	Charge pump flying capacitor positive	
21PGNDPGround for line driver22UVPIUnder voltage protection for line driverInternally pulled high23OUTLOLeft output for Line driverInternally pulled high24LINNILeft input for Line driverImage: Schwitt trigger TTL input buffer25SDAI/OI²C bi-directional serial data.Schmitt trigger TTL input buffer26SCLII²C serial clock input.Schmitt trigger TTL input buffer27RESETIReset, low active.Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	19	Cr	1/0	connection for line driver	
22UVPIUnder voltage protection for line driverInternally pulled high23OUTLOLeft output for Line driver	20	PVDD	Р	Supply voltage for line driver	
23 OUTL O Left output for Line driver 24 LINN I Left input for Line driver 25 SDA I/O I ² C bi-directional serial data. Schmitt trigger TTL input buffer 26 SCL I I ² C serial clock input. Schmitt trigger TTL input buffer 27 RESET I Reset, low active. Schmitt trigger TTL input huffer	21	PGND	Р	Ground for line driver	
24 LINN I Left input for Line driver 25 SDA I/O I ² C bi-directional serial data. Schmitt trigger TTL input buffer 26 SCL I I ² C serial clock input. Schmitt trigger TTL input buffer 27 RESET I Reset, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	22	UVP	Ι	Under voltage protection for line driver	Internally pulled high
25 SDA I/O I ² C bi-directional serial data. Schmitt trigger TTL input buffer 26 SCL I I ² C serial clock input. Schmitt trigger TTL input buffer 27 RESET I Reset, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	23	OUTL	0	Left output for Line driver	
26 SCL I I ² C serial clock input. Schmitt trigger TTL input buffer 27 RESET I Reset, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	24	LINN	I	Left input for Line driver	
27 RESET I Reset, low active. Schmitt trigger TTL input buffer, internal pull High with a 330Kohm	25	SDA	I/O	I ² C bi-directional serial data.	Schmitt trigger TTL input buffer
27 RESET I Reset, low active. internal pull High with a 330Kohm	26	SCL	I	I ² C serial clock input.	Schmitt trigger TTL input buffer
					Schmitt trigger TTL input buffer,
resistor.	27	RESET	I	Reset, low active.	internal pull High with a 330Kohm
					resistor.

Preliminary

				ĩ
28	TEST	I	This pin must connect to GND.	
29	DVDD	Р	Digital Power.	
30	DGND	Р	Digital Ground.	
31	VREG	0	1.8V Regulator voltage output.	
32	GVDD	0	5V Regulator voltage output. This pin must	
32	GVDD	0	not be used to drive external devices.	
33	BST_RB	Р	Bootstrap supply for right channel output B.	
34	VDDR	Р	Right channel supply.	
35	VDDR	Р	Right channel supply.	
36	RB	0	Right channel output B.	
37	GNDR	Р	Right channel ground.	
38	GNDR	Р	Right channel ground.	
39	RA	0	Right channel output A.	
40	NC		Not connected.	
41	NC		Not connected.	
42	BST_RA	Р	Bootstrap supply for right channel output A.	
43	BST_LB	Р	Bootstrap supply for left channel output B.	
44	NC		Not connected.	
45	NC		Not connected.	
46	LB	0	Left channel output B.	
47	GNDL	Р	Left channel ground.	
48	GNDL	Р	Left channel ground.	

Functional Block Diagram

Ordering Information

Product ID	Product ID Package Packing / MPQ		Comments
	E-LQFP 48L	250 Units / Tray	Croon
AD87088-LG48NRY	(7mmx7mm)	2.5K Units / Box (10 Tray)	Green
AD87088-LG48NRR	E-LQFP 48L	2k Units / Reel	Green
AD07000-LG40NKK	(7mmx7mm)	1 reel / Small box	Green

Available Package

Package Type	Device No.	<i>θ</i> _{ja} (℃/₩)	Ψ _{jt} (℃/₩)	<i>θ</i> _{jt} (℃/₩)	Exposed Thermal Pad
E-LQFP 48L	AD87088	22.9	1.64	34.9	Yes (Note1)

Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.

Note 1.2: \mathcal{O}_{ja} , the junction-to-ambient thermal resistance is simulated on a room temperature ($T_A=25^{\circ}C$), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.

Note 1.3: Ψ_{jt} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining \mathcal{O}_{ja} , using a procedure described in JESD51-2.

Note 1.4: θ_{jt} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.

Marking Information

AD87088

Line 1 : LOGO

- Line 2 : Product no.
- Line 3 : Tracking Code

Line 4 : Date Code

ESMT AD87088 Tracking Code Date Code

E-LQFP 48L

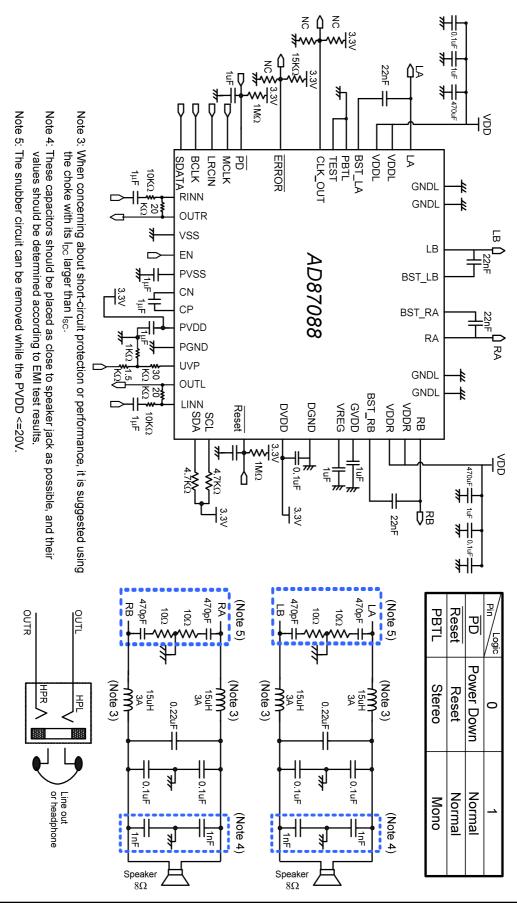
Absolute Maximum Ratings

Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	-0.3	3.6	V
PVDD	Supply for Line Driver	-0.3	3.6	V
VDDL/R	Supply for Driver Stage	-0.3	30	V
R _{LLD}	Minimum Load Impedance for Line Driver	12.8		Ω
R _{LDS}	Minimum Load Impedance for Driver Stage	3.2		Ω
Vi	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
TJ	Junction Operating Temperature	-40	150	°C

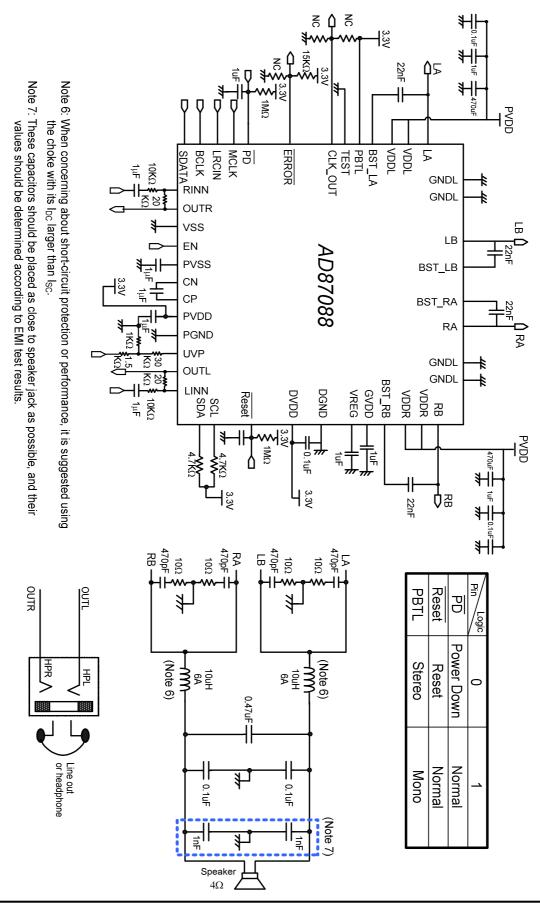
Recommended Operating Conditions

Symbol	Parameter Typ		Units
DVDD	Supply for Digital Circuit	3.15~3.45	V
PVDD	Supply for Line Driver	3.15~3.45	V
VDDL/R	Supply for Driver Stage 8~26		V
R _{LLD}	Minimum Load Impedance for Line Driver	>16	Ω
R _{LDS}	Minimum Load Impedance for Driver Stage	ance for Driver Stage >4	
TJ	Junction Operating Temperature -40~125		°C
T _A	T _A Ambient Operating Temperature -40~85		°C


General Electrical Characteristics

Condition: T _A =25 °C	(unless otherwise	specified).
----------------------------------	-------------------	-------------

<u> </u>	<u> </u>			r		
Symbol			Min		Max	Units
$I_{PD(VDDL/R)}$	VDDL/R Supply Current during Power Down	VDDL/R=24V		20	40	uA
I _{PD(PVDD)}	PVDD Supply Current during Shutdown	PVDD=3.3V			5	uA
	Quiescent current for VDDL/R			15		mA
IQ(VDDL/R)	(50%/50% PWM duty)	VDDL/I\=24V		15		ША
	Quiaccont ourrent for DV/DD (Un muto)	DVDD=3.3V,		21		m۸
Q(DVDD)		oly Current during Power DownVDDL/R=24V2oly Current during ShutdownPVDD=3.3V1cent current for VDDL/RVDDL/R=24V10%/50% PWM duty)DVDD=3.3V, PBTL=Low3current for DVDD (Un-mute)DVDD=3.3V, PBTL=Low3acent current for PVDDPVDD=3.3V1acent current for PVDDPVDD=3.3V3acent current for PVDDPVDD=3.3V3acent current for PVDDPVDD=3.3V3acent current for PVDDPVDD=3.3V3under Voltage Release22DUnder Voltage Release23Cunder Voltage Active23R Under Voltage Active23R Under Voltage Active243Source On-state Resistor, NMOSVDDL/R=24V, Id=500mA1Over-Current Protection (Note 2)VDDL/R=12V1orter-Current Protection (Note 2)VDDL/R=12V1orter-Level Input VoltageDVDD=3.3V2.0u-Level Output VoltageDVDD=3.3V2.4-Level Output VoltageDVDD=3.3V2.4	51		mA	
I _{Q(PVDD)}	Quiescent current for PVDD	PVDD=3.3V		7	15	mA
т	Junction Temperature for Driver Shutdown			165		°C
I SENSOR	Temperature Hysteresis for Recovery from Shutdown			35	20 40 20 5 15 5 15 15 31 15 165 15 35 2.99 2.89 2.89 7.7 7.1 29.2 2.82 28.5 180 9 2.85 180 17 17 0.8 17 0.4	°C
UV_DVDDH	DVDD Under Voltage Release			2.99		V
UV_DVDDL	DVDD Under Voltage Active			2.89		V
$\mathrm{UV}_{\mathrm{VDDL/RH}}$	VDDL/R Under Voltage Release			7.7		V
$\mathrm{UV}_{\mathrm{VDDL/RL}}$	VDDL/R Under Voltage Active			7.1		V
OV _H	VDDL/R Over Voltage Active			29.2		V
OVL	VDDL/R Under Voltage Release			28.5		V
RDS(ON)	Static Drain-to-Source On-state Resistor, NMOS	VDDL/R=24V, Id=500mA		180		mΩ
	L(P) Channel Over Current Protection (Note 2)	VDDL/R=24V		9	5 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0	А
	L(R) Channel Over-Current Protection (Note 2)	VDDL/R=12V		8.5		А
IPD(PVDD) IQ(VDDL/R) IQ(DVDD) IQ(PVDD) TSENSOR UVDVDDH UVDDLAH UVVDDL/RH UVVDDL/RH UVVDDL/RL OVH OVL	Mana Over Current Protection (Note 2)	VDDL/R=24V		18		А
	Mono Over-Current Protection (Note 2)	Power Down VDDL/R=24V 20 g Shutdown PVDD=3.3V 1 1 DDL/R VDDL/R=24V 15 15 DU(n-mute) DVDD=3.3V, PBTL=Low 31 31 PVDD PVDD=3.3V 7 165 PVDD PVDD=3.3V 7 165 PVDD PVDD=3.3V 7 165 PVDD PVDD=3.3V 7 165 Pvp from Shutdown 165 2.99 165 Active 2.99 2.89 165 Release 7.7 2 2.89 Release 2.99 2.89 180 Release 2.92 2 2 Release 2.89 180 180 Mone (Note 2) VDDL/R=24V, 18 180 180 WDDL/R=12V 18 180 18 Mone (Note 2) VDDL/R=12V 17 17 Mage DVDD=3.3V 2.0 17 Mage DVDD=3.3V		А		
V _{IH}	High-Level Input Voltage	DVDD=3.3V	2.0			V
V _{IL}	Low-Level Input Voltage	DVDD=3.3V			0.8	V
V _{OH}	High-Level Output Voltage	DVDD=3.3V	2.4			V
V _{OL}	Low-Level Output Voltage	DVDD=3.3V			0.4	V
C	Input Capacitance			6.4		pF

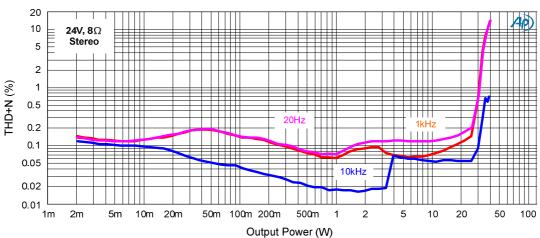

Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Application Circuit Example for Stereo

Publication Date: Feb. 2018 Revision: 0.3 8/84

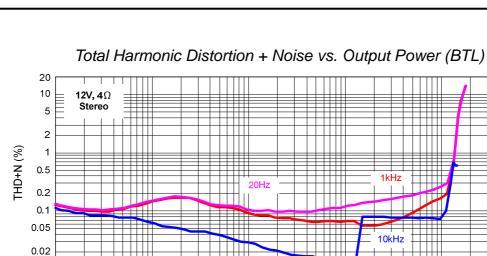
Application Circuit Example for Mono

Electrical Characteristics and Specifications for Loudspeaker


BTL (Bridge-Tied-Load) output for Stereo

Condition: $T_A=25^{\circ}C$, DVDD=3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load=8 Ω with passive LC lowpass filter (L=15 μ H with $R_{DC}=63m \Omega$, C=220nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Р	RMS Output Power (THD+N=0.12%)				20		W
P ₀	RMS Output Power (THD+N=0.10%)				15		W
(Note 9)	RMS Output Power (THD+N=0.08%)				10		W
THD+N	Total Harmonic Distortion + Noise	P ₀ =7.5W			0.07		%
SNR	Signal to Noise Ratio (Note 8)	Maximum power at THD < 1% @1kHz			106		dB
DR	Dynamic Range (Note 8)		-60dB		108		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			100		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-73		dB
	Channel Separation	1W @1kHz			-72		dB

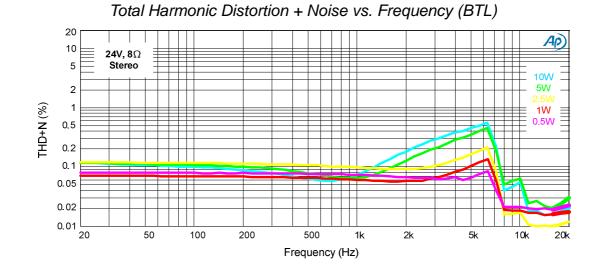

Note 8: Measured with A-weighting filter.

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Total Harmonic Distortion + Noise vs. Output Power (BTL)

AD)

50m 100m 200m


10m 20m

ESMT

0.01 └── 1m

2m

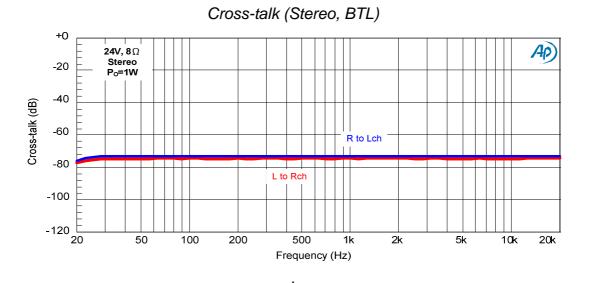
5m

2

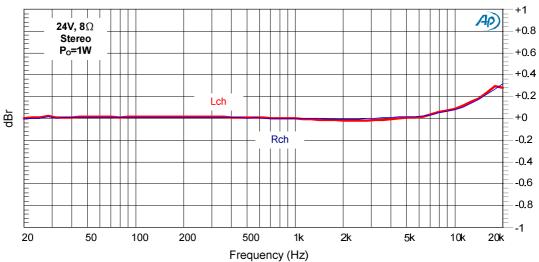
5

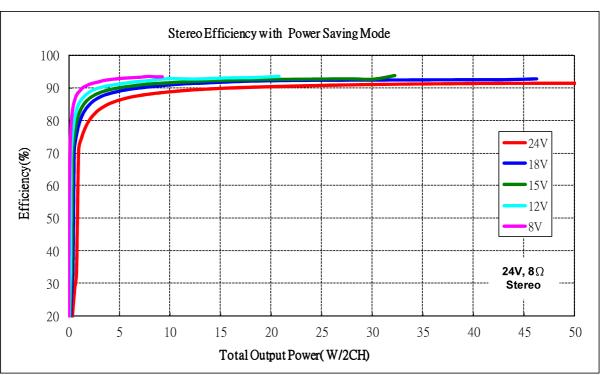
10

20

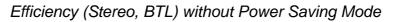

50

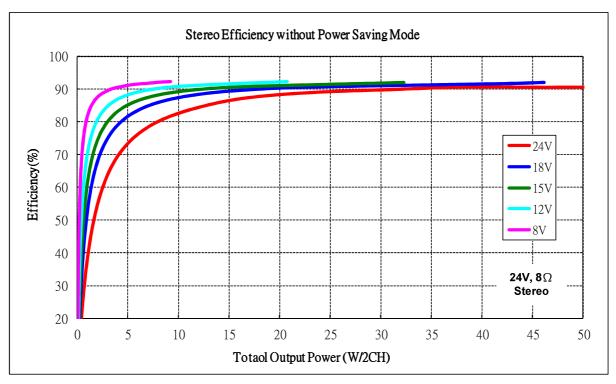
100


500m


Output Power (W)

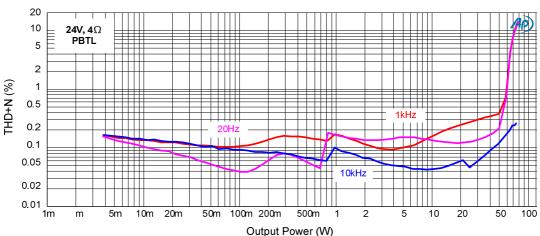
1





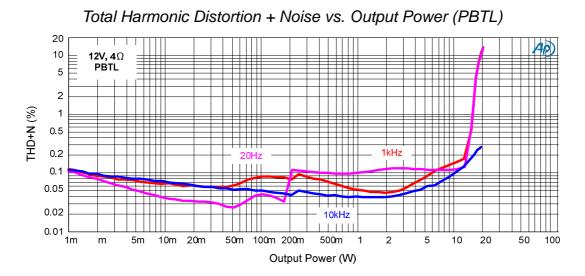
Efficiency (Stereo, BTL) during Power Saving Mode

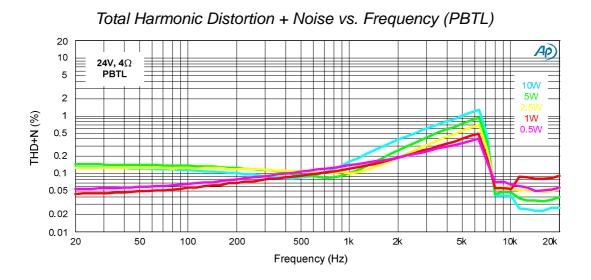
Electrical Characteristics and Specifications for Loudspeaker (cont.)

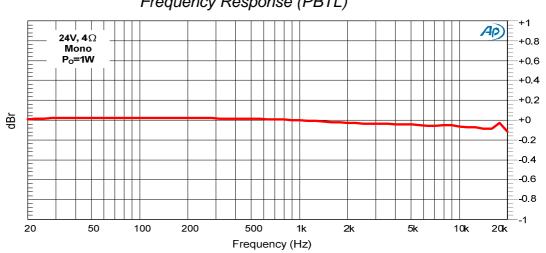

• PBTL (Parallel-Bridge-Tied-Load) output for Mono

Condition: $T_A=25^{\circ}C$, DVDD= 3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load=4 Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=27m \Omega$, C=470nF); Input is 1kHz sinewave.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
D	RMS Output Power (THD+N=0.35%)				40		W
P ₀	RMS Output Power (THD+N=0.31%)				30		W
(Note 9)	RMS Output Power (THD+N=0.26%)				20		W
THD+N	Total Harmonic Distortion + Noise	P _o =15W			0.22		%
		Maximum					
SNR	Signal to Noise Ratio (Note 8)	power at THD			102		dB
		< 1% @1kHz					
DR	Dynamic Range (Note 8)		-60dB		106		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			130		uV
PSRR	Power Supply Rejection Ratio	$V_{RIPPLE} = 1V_{RMS}$			-78		dB
FORK		at 1kHz			-70		uD

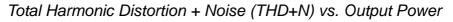

Note 8: Measured with A-weighting filter.

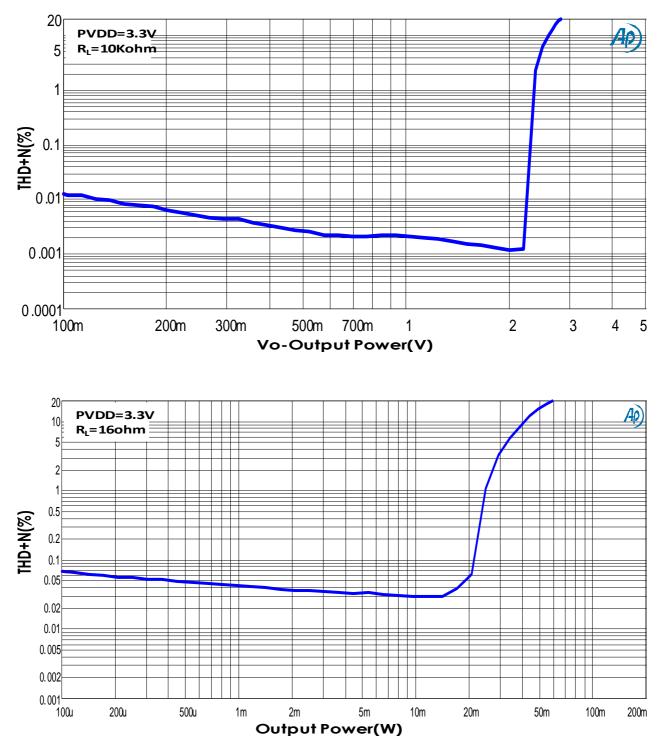

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.



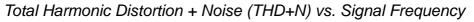
Total Harmonic Distortion + Noise vs. Output Power (PBTL)

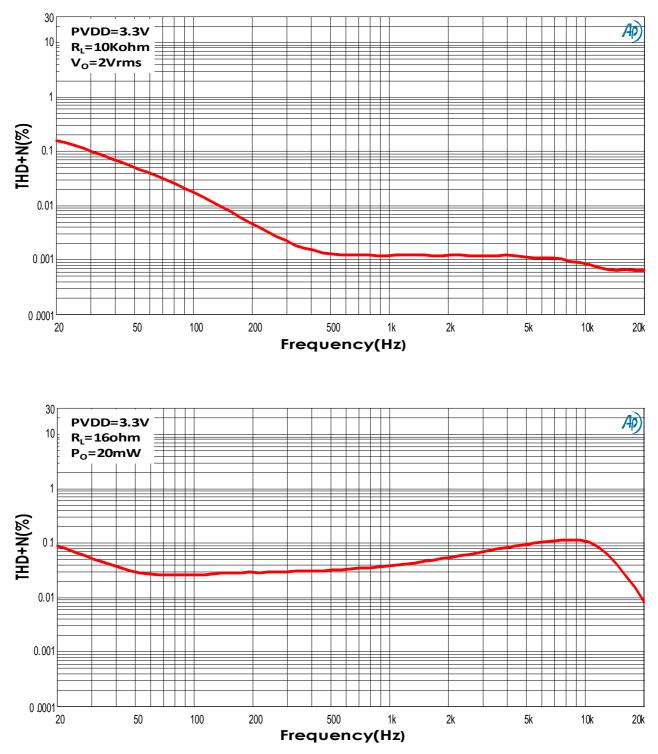
Frequency Response (PBTL)

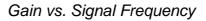

Electrical Characteristics and Specifications for Line Driver

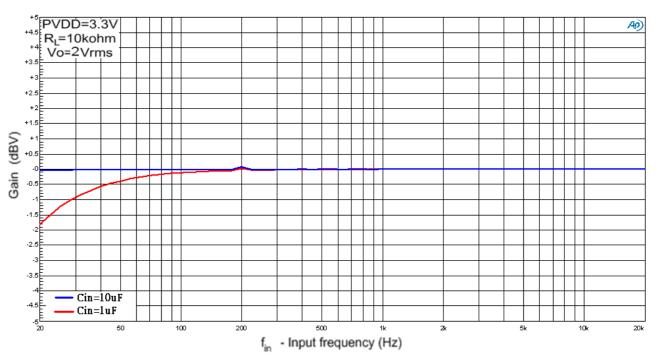

• Line driver

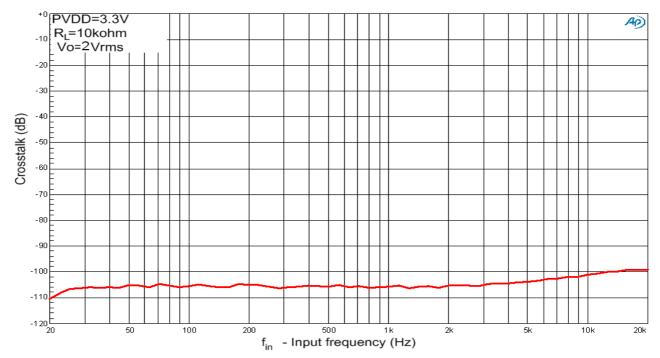
 $\mathsf{PVDD}=3.3\mathsf{V}, \mathsf{T}_{\mathsf{A}}=25^{\circ}\!\!\mathbb{C}, \mathsf{R}_{\mathsf{L}}=10k\Omega, \mathsf{C}_{\mathsf{FLY}}=\mathsf{C}_{\mathsf{PVSS}}=1\mu\mathsf{F}, \mathsf{C}_{\mathsf{IN}}=1\mu\mathsf{F}, \mathsf{R}_{\mathsf{I}}=10k\Omega, \mathsf{R}_{\mathsf{F}}=20k\Omega \text{ (unless otherwise noted)}$

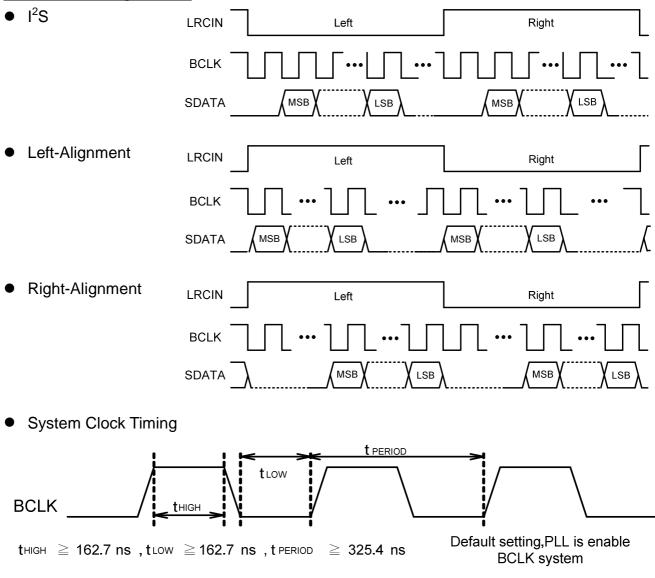

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vo	Output Voltage (Outputs In Phase)	THD+N=1%, V _{DD} =3.3V, f _{IN} =1kHz	2.0	2.3		Vrms
THD+N	Total Harmonic Distortion Plus Noise	V ₀ =2Vrms, f _{IN} =1kHz		0.004		%
Crosstalk	Channel Separation	V _O =2Vrms, f _{IN} =1kHz		-105		dB
V _N	Output Noise	R _I =10k, R _F =10k		7	15	µVrms
V_{SR}	Slew Rate			8		V/µs
SNR	Signal to Noise Ratio	V _O =2Vrms, R _I =10k, R _F =10k, A-weighted	90	107		dB
G _{BW}	Unit-Gain Bandwidth			8		MHz
A _{VO}	Open-Loop Gain		80			dB
V _{os}	Output Offset Voltage	V _{DD} =3.0V to 3.6V, Input Grounded	-1		1	mV
PSRR	Power Supply Rejection Ratio	V _{DD} =3.0V to 3.6V, V _{rr} =200mVrms, f _{IN} =1kHz		-76	-60	dB
RI	Input Resistor Range		1	10	47	kΩ
R _F	Feedback Resistor Range		4.7	20	100	kΩ
f _{CP}	Charge-Pump Frequency		400	500	600	kHz
	Maximum capacitive Load			220		pF
V _{UVP}	External Under Voltage Detection			1.25		V
I _{HYS}	External Under Voltage Detection Hysteresis Current			5		μA
T _{start-up}	Start-up Time			0.5		ms

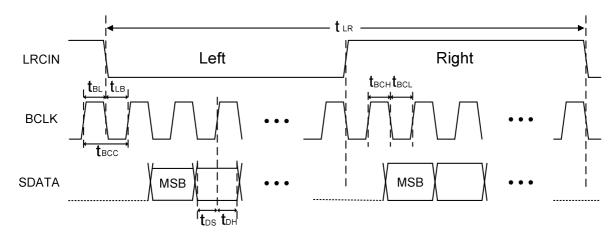




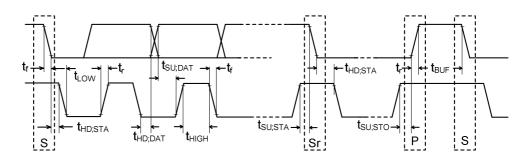








Interface configuration


• Timing Relationship (Using I²S format as an example)

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _s)	5.2		31.25	μs
t _{BL}	BCLK Rising Edge to LRCIN Edge	25			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	25			ns
t _{BCC}	BCLK Period (1/64F _S)	81.38		488.3	ns
t _{BCH}	BCLK Pulse Width High	40.69		244	ns
t _{BCL}	BCLK Pulse Width Low	40.69		244	ns
t _{DS}	SDATA Set-Up Time	25			ns
t _{DH}	SDATA Hold Time	25			ns

• I²C Timing

Devementer	Currents of	Standard M		Fast Mo	de	Linit
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μs
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μs
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μs
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μs
Setup time for I ² C bus data	t _{SU;DAT}	250		100		Ns
Rise time of both SDA and SCL signals	tr		1000		300	Ns
Fall time of both SDA and SCL signals	t _f		300		300	Ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μs
Bus free time between STOP and the next	4	4 7		1.0		
START condition	t _{BUF}	4.7		1.3		μs
Capacitive load for each bus line	Cb		400		400	pF

Operation Description

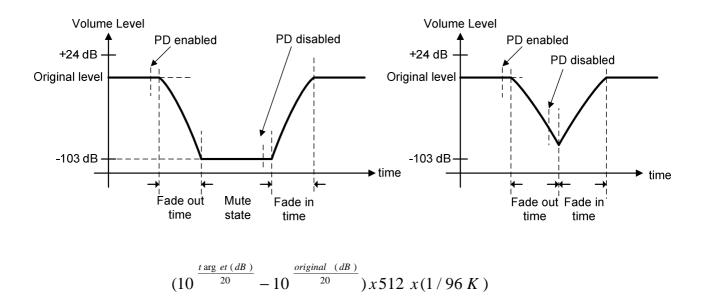
The default volume of AD87088 is muted. AD87088 will be activated while the de-mute command via I²C is programmed.

Internal PLL


AD87088 has a built-in PLL internally, the BCLK/FS or MCLK/FS ratio, which is selected by I²C control interface. The clock inputted into the BCLK or MCLK pin becomes the frequency of multiple edge evaluation in chip internally.

Fs	BCLK/FS Setting Ratio for PLL	BCLK Frequency	Multiple edge evaluation for bit clock	PWM Career Frequency
48kHz	64x	3.072MHz	32x	384kHz
44.1kHz	64x	2.8224MHz	32x	352.8kHz
32kHz	64x	2.048MHz	32x	256kHz

Fs	MCLK/FS Setting Ratio for PLL	MCLK Frequency	Multiple edge evaluation for Master clock	PWM Career Frequency
48kHz	256x	12.288MHz	8x	384kHz
44.1kHz	256x	11.2896MHz	8x	352.8kHz
32kHz	256x	8.192MHz	8x	256kHz


Reset

When the \overrightarrow{RESET} pin is lowered, AD87088 will clear the stored data and reset the register table to default values. AD87088 will exit reset state at the 512th internal clock cycle after the \overrightarrow{RESET} pin is raised to high.

• Power down control

AD87088 has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

The volume level will be decreased to $-\infty$ dB in several LRCIN cycles. Once the fade-out procedure is finished, AD87088 will turn off the power stages, clock signals (for digital circuits) and current (for analog circuits). After PD pin is pulled low, AD87088 requires T_{fade} to finish the forementioned work before entering power down state. User can not program AD87088 during power down state. Also, all settings in the registers will remain intact unless DVDD is removed.

If the PD signal is removed during the fade-out procedure (above, right figure), AD87088 will still execute the fade-in procedure. In addition, AD87088 will establish the analog circuits' bias current and send the clock signals to digital circuits. Afterwards, AD87088 will return to its normal status.

• Self-protection circuits

AD87088 has built-in protection circuits including thermal, short-circuit, under-voltage detection, and over voltage circuits.

- (i) When the internal junction temperature is higher than 165℃, power stages will be turned off and AD87088 will return to normal operation once the temperature drops to 130℃. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 9A for stereo configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once short-circuit condition is removed, AD87088 will exit ERROR state when one of the following conditions is met: (1) $\overline{\text{RESET}}$ pin is pulled low, (2) $\overline{\text{PD}}$ pin is pulled low, (3) Master mute is enabled through the l²C interface.

- (iii) Once the DVDD voltage is lower than 2.89V, AD87088 will turn off its loudspeaker power stages. When DVDD becomes higher than 2.99V, AD87088 will return to normal operation.
- (iv) Once the VDDL/R voltage is higher than 29.2V, AD87088 will turn off its loudspeaker power stages. When VDDL/R becomes lower than 28.5V, AD87088 will return to normal operation.
- (v) Once the VDDL/R voltage is lower than 7.1V, AD87088 will turn off its loudspeaker power stages. When VDDL/R becomes higher than 7.7V, AD87088 will return to normal operation.

• Anti-pop design

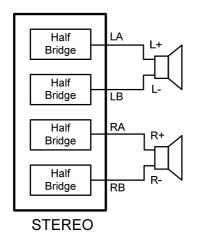
AD87088 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

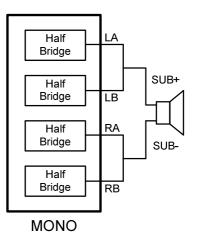
3D surround sound

AD87088 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

• I²C Chip Select

 $\overline{\text{ERROR}}$ is an input pin during power. It can be pulled High (15-k Ω pull up) or Low (15-k Ω pull down). Low indicates an I²C address of 0x30, and high an address of 0x31.

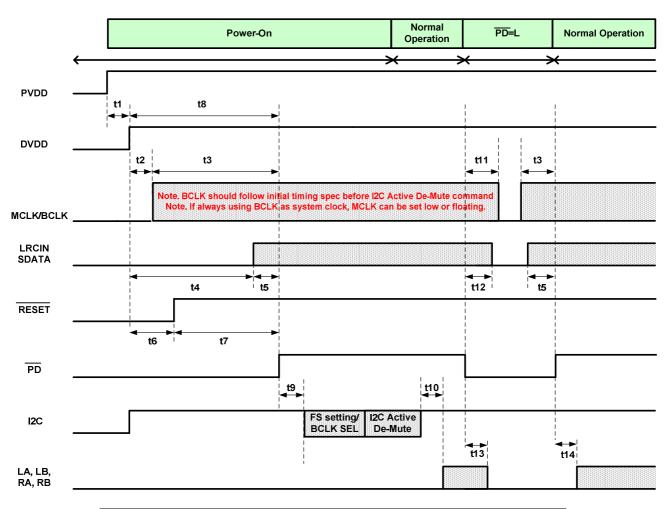



• Output configuration

The PBTL pin defines the configuration mode. AD87088 can be configured to stereo or mono via PBTL pin.

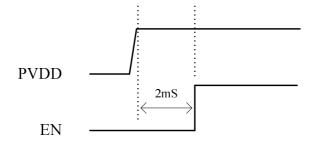
Table 1.							
PBTL	Configuration Mode						
0	Stereo						
1	Mono						
x	Mono via I ² C control						
^	(MONO_EN=1 and MONO_KEY=3006(HEX))						

Configuration figures:



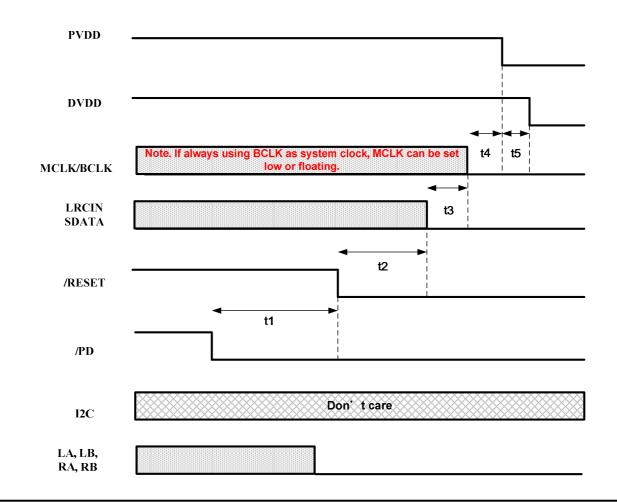
• Power on sequence

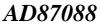
Hereunder is AD87088's power on sequence. Give a de-mute command via I²C when the whole system is stable.



Symbol	Condition	Min	Мах	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10		-	0.1	msec
t11		25	-	msec
t12		25	-	msec

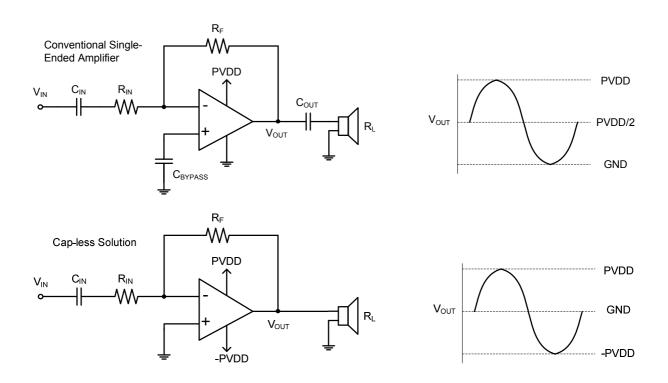
t13			22(FADE_SPEED=0)	msoc
		-	176(FADE_SPEED=1)	msec
t14	14		0.1	msec


Hereunder is AD87088's Line Driver power on sequence. Please put 2ms timing delay to enable the Line Driver after PVDD power up ready.


Power on sequence for Line Driver

• Power off sequence

Hereunder is AD87088's power off sequence.

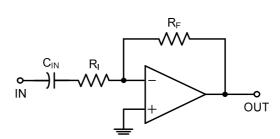


Symbol	Condition	Min	Max	Units
t1		35(FADE_SPEED=0)		2000
		280(FADE_SPEED=1)	-	msec
t2		0.1	-	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec

• Line Driver Amplifiers Operation

A conventional inverting line-driver amplifier always requires an output dc-blocking capacitor and a bypass capacitor. DC blocking capacitors are large in size and cost a lot. It also restricts the output low frequency response. POP will occur if the charge and discharge processes on output capacitors are not carefully take cared. Besides, it needs to wait for a long time to charge V_{OUT} from 0V to PVDD/2.

For a cap-less line driver, a negative supply voltage (-PVDD) is produced by the integrated charge-pump, and feeds to line driver's negative supply instead of ground. The positive input can directly connect to ground without a C_{BYPASS} , and V_{OUT} is biased at ground which can eliminate the output dc-blocking capacitors. The output voltage swing is doubled compared to conventional amplifiers.



•Gain Setting Resistors (R_I and R_F) in Line Driver

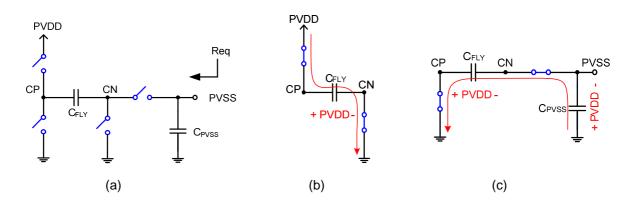
The line driver's gain is determined by R_1 and R_F . The configuration of the amplifier is inverting type, The gain equation is listed as follows:

Inverting configuration: $A_V = -\frac{R_F}{R_I}$

The values of R_I and R_F must be chosen with consideration of stability, frequency response and noise. The recommended value of R_I is in the range from $1k\Omega$ to $47k\Omega$, and R_F is from $4.7k\Omega$ to $100k\Omega$ for. The gain is in the range from -1V/V to -10V/V for inverting configuration. The following table show the recommended resistor values for different configurations.

R _i (kΩ)	R _F (kΩ)	Inverting Input Gain (V/V)
22	22	-1
15	30	-2
33	68	-2.1
10	100	-10

• Input Blocking Capacitors (C_{IN}) for Line Driver

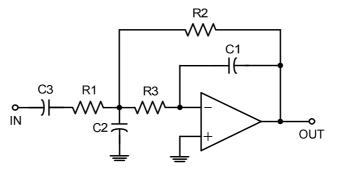

An input blocking capacitor is required to block the dc voltage of the audio source and allows the input to bias at a proper dc level for optimum operation. The input capacitor and input resistor (R_1) form a high-pass filter with the corner frequency determined as following equation:

$$f_C = \frac{1}{2\pi R_I C_{IN}}$$

• Charge-Pump Operation for Line Driver

The charge-pump is used to generate a negative supply voltage to supply to line-driver. It needs two external capacitors, C_{FLY} and C_{PVSS} , for normal operation, see figure (a). The operation can be analyzed with two phase. In phase I, see figure (b), C_{FLY} is charged to PVDD, and in phase II, see figure (c), the charges on C_{FLY} are shared with C_{PVSS} , that makes PVSS a negative voltage. After an adequate clock cycles, PVSS will be equaled to –PVDD. Low ESR capacitors are recommended, and the typical value of C_{FLY} and C_{PVSS} is 1µF. A smaller capacitance can be used, but the maximum output voltage may be reduced.

Decoupling Capacitors in Line Driver


A low ESR power supply decoupling capacitor for PVDD is required for better performance. The capacitor should place as close to chip as possible, the value is typically 1μ F. For filtering low frequency noise signals, a 10μ F or greater capacitor placed near the chip is recommended.

• Second-Order Filter Configuration for Line Driver

Line Driver can be used like a standard OPAMP. Several filter topologies can be implemented by using line driver, both single-ended and differential input configuration. For inverting input configuration, the overall gain

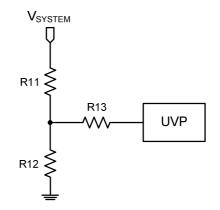
is $-\frac{R2}{R1}$, the high-pass filter's cutoff frequency is $\frac{1}{2\pi R 1 C3}$, the low-pass filter's cutoff frequency is $\frac{1}{2\pi R 1 C3}$

 $rac{1}{2\pi\sqrt{R2R3C1C2}}$, The following table show the detail component values.

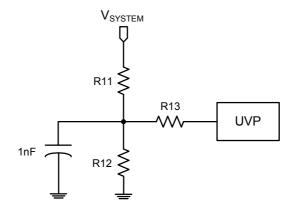
Gain	High	Low						
(V/V)	Pass	Pass	C1 (pF)	C2 (pF)	C3 (µF)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)
(0/0)	(Hz)	(kHz)						
-1	1.6	40	100	680	10	10	10	24
-1.5	1.3	40	68	680	15	8.2	12	30
-2	1.6	60	33	150	6.8	15	30	47
-2	1.6	30	47	470	6.8	15	30	43
-3.33	1.2	30	33	470	10	13	43	43
-10	1.5	30	22	1000	22	4.7	47	27

Elite Semiconductor Memory Technology Inc.

Publication Date: Feb. 2018 Revision: 0.3 30/84


• External Under-Voltage Protection for Line Driver

The external under-voltage protection is used to mute the line-driver before any input voltage change to generate a POP. The threshold of UVP pin is designed to 1.25V. By using a resistor divider, users can decide the UVP level and hysteresis level. The levels can be obtained by following equations:


 $V_{UVP} = (1.25V - 6\mu A \times R13) \times (R11 + R12) / R12$ Hysteresis = $5\mu A \times R13 \times (R11 + R12) / R12$

With the condition R13 >> (R11 // R12).

For example, to obtain V_{UVP} =2.67V, Hysteresis=0.37V, R11=1.5k Ω , R12=1k Ω , R13=30k Ω .

The UVP pin voltage ripple needs to take care during power up state within 2mS. The UVP pin ripple lower 1.25V by 2~4 times will trigger test mode in Line Driver. To put a capacitor parallel with UVP pin can improve test mode mis-operating triggered while V_{STSTEM} is not stable during power up initially. That's recommended 2mS timing delay to enable the Line Driver after PVDD power up ready.

UVP pin is pulled high internally, and therefore it can be floated to disable the external under-voltage protection feature.

I²C-Bus Transfer Protocol

Introduction

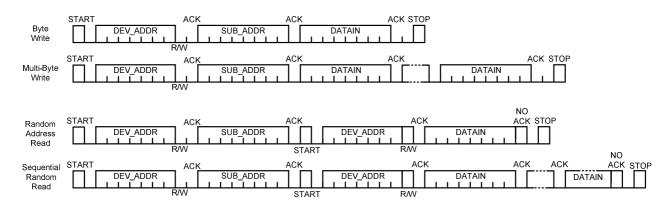
AD87088 employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD87088 is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD87088 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity


The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD87088 samples the SDA signal at the rising edge of SCL signal.

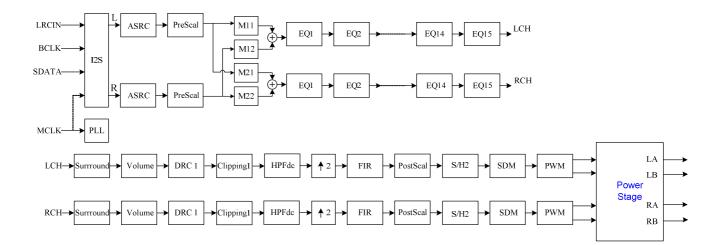
Device addressing

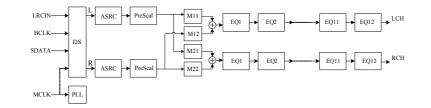
The master generates 7-bit address to recognize slave devices. When AD87088 receives 7-bit address matched with 0110000 or 0110001 (ERROR pin state during power up), AD87088 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD87088 internal sub-addresses.

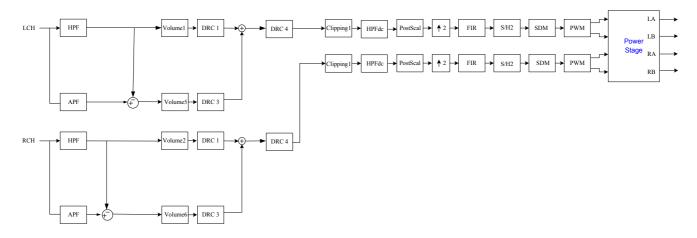
Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD87088 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

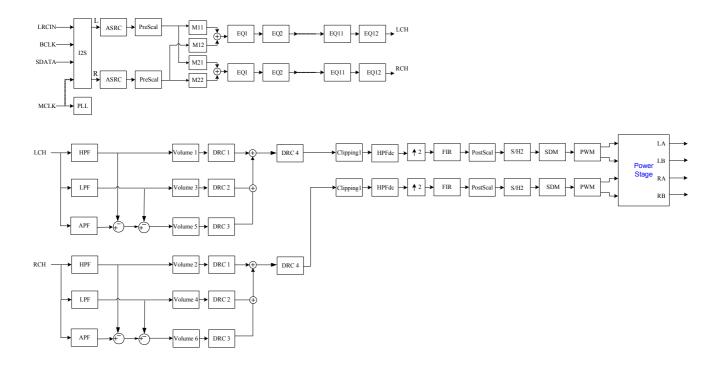
Elite Semiconductor Memory Technology Inc.

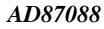

Publication Date: Feb. 2018 Revision: 0.3 32/84


Register Table

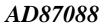

The AD87088's audio signal processing data flow is shown below. User can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

One band DRC


Dual band DRC

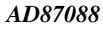

Three bands DRC

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	Reserved	PWML_X	PWMR_X	LV_UVSEL	LREXC
0X01	SCTL2	BCLK_SEL	FS[1]	FS[0]	Reserved	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLK_OUT	MUTE	CM1	CM2	CM3	CM4	CM5	CM6
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	C4VOL	C4V[7]	C4V[6]	C4V[5]	C4V[4]	C4V[3]	C4V[2]	C4V[1]	C4V[0]
0X08	C5VOL	C5V[7]	C5V[6]	C5V[5]	C5V[4]	C5V[3]	C5V[2]	C5V[1]	C5V[0]
0X09	C6VOL	C6V[7]	C6V[6]	C6V[5]	C6V[4]	C6V[3]	C6V[2]	C6V[1]	C6V[0]
0X0A	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X0B	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X0C	SCTL4	SRBP	BTE	DEQE	NGE	EQL	PSL	DSPB	НРВ
0X0D	C1CFG		Rese	erved		C1PCBP	C1DRCBP	Reserved	C1VBP
0X0E	C2CFG		Rese	erved		C2PCBP	C2DRCBP	Reserved	C2VBP
0X0F	C3CFG		Reserved				C3DRCBP	Reserved	C3VBP
0X10	C4CFG		Reserved					Reserved	C4VBP
0X11	C5CFG			Reserved			C5DRCBP	Reserved	C5VBP



Preliminary

i	1 1								
0X12	C6CFG			Reserved	C6DRCBP	Reserved	C6VBP		
0X13	C7CFG		Reserved					Reserved	Reserved
0X14	C8CFG	Reserved					C8DRCBP	Reserved	Reserved
0X15	LAR1	LA1[3]	LA1[2]	LA1[1]	LA1[0]	LR1[3]	LR1[2]	LR1[1]	LR1[0]
0X16	LAR2	LA2[3]	LA2[2]	LA2[1]	LA2[0]	LR2[3]	LR2[2]	LR2[1]	LR2[0]
0X17	LAR3	LA3[3]	LA3[2]	LA3[1]	LA3[0]	LR3[3]	LR3[2]	LR3[1]	LR3[0]
0X18	LAR4	LA4[3]	LA4[2]	LA4[1]	LA4[0]	LR4[3]	LR4[2]	LR4[1]	LR4[0]
0X19	ERDLY				Prohil	bited			
0X1A	SCTL5	Reserved	MONO_EN	SW_RSTB	LVUV_FADE	Reserved	DIS_MCLK_DET	QT_EN	PWM_SEL
0X1B	SCTL6	DIS_HVUV	DRC_SEL[1]	DRC_SEL[0]	Rese	erved	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X1C	SCTL7	Reserved	A_SEL_FAULT	D_MOD	DIS_NG_FADE	QD_EN	FADE_SPEED	NG_GAIN[1]	NG_GAIN[0]
0X1D	CFADDR	CFA[7]	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X1E	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X1F	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X20	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X21	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X22	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X23	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X24	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X25	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X26	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X27	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X28	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X29	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X2A	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X2B	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
0X2C	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X2D	CFRW	Reserved	RBS	R3	W3	RA	R1	WA	W1
0X2E	PRS				Prohil	pited			
0X2F	MBIST				Prohil	pited			
0X30	Reserved				Rese	rved			
0X31	PWM_CTRL				Prohil	pited			
0X32	TM_CTRL				Prohil	pited			
0X33	QT_SW_LEVEL	SW_LEVEL [2]	SW_LEVEL [1]	SW_LEVEL [0]	QT_SW_LEVEL [4]	QT_SW_LEVEL [3]	QT_SW_LEVEL [2]	QT_SW_LEVEL [1]	QT_SW_LEVEL [0]
0X34	VFT1	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	C3V_FT[1]	C3V_FT[0]
0X35	VFT2	C4V_FT[1]	C4V_FT[0]	C5V_FT[1]	C5V_FT[0]	C6V_FT[1]	C6V_FT[0]	Rese	erved



0X36	OCB_GVDDS	Prohibited							
0X37	ID	DN[3]	DN[2]	DN[1]	DN[0]	VN[3]	VN[2]	VN[1]	VN[0]
0X38	R1ADDR	Prohibited							
0X39	R1D1	Prohibited							
0X3A	R1D2	Prohibited							
0X3B	R1D3	Prohibited							
0X3C	R1RW	Prohibited							
0X3D	R2ADDR	Prohibited							
0X3E	R2D1	Prohibited							
0X3F	R2D2	Prohibited							
0X40	R2D3	Prohibited							
0X41	R2RW	Prohibited							
0X42	LMC	C1_CLR	C2_CLR	C3_CLR	C4_CLR	C5_CLR	C6_CLR	C7_CLR	C8_CLR
0X43	PMC	C1_CLR_RMS	C2_CLR_RMS	C3_CLR_RMS	C4_CLR_RMS	C5_CLR_RMS	C6_CLR_RMS	C7_CLR_RMS	C8_CLR_RMS
0X44	TC1LM	C1_LEVEL[23]	C1_LEVEL[22]	C1_LEVEL[21]	C1_LEVEL[20]	C1_LEVEL[19]	C1_LEVEL[18]	C1_LEVEL[17]	C1_LEVEL[16]
0X45	MC1LM	C1_LEVEL[15]	C1_LEVEL[14]	C1_LEVEL[13]	C1_LEVEL[12]	C1_LEVEL[11]	C1_LEVEL[10]	C1_LEVEL[9]	C1_LEVEL[8]
0X46	BC1LM	C1_LEVEL[7]	C1_LEVEL[6]	C1_LEVEL[5]	C1_LEVEL[4]	C1_LEVEL[3]	C1_LEVEL[2]	C1_LEVEL[1]	C1_LEVEL[0]
0X47	TC2LM	C2_LEVEL[23]	C2_LEVEL[22]	C2_LEVEL[21]	C2_LEVEL[20]	C2_LEVEL[19]	C2_LEVEL[18]	C2_LEVEL[17]	C2_LEVEL[16]
0X48	MC2LM	C2_LEVEL[15]	C2_LEVEL[14]	C2_LEVEL[13]	C2_LEVEL[12]	C2_LEVEL[11]	C2_LEVEL[10]	C2_LEVEL[9]	C2_LEVEL[8]
0X49	BC2LM	C2_LEVEL[7]	C2_LEVEL[6]	C2_LEVEL[5]	C2_LEVEL[4]	C2_LEVEL[3]	C2_LEVEL[2]	C2_LEVEL[1]	C2_LEVEL[0]
0X4A	TC3LM	C3_LEVEL[23]	C3_LEVEL[22]	C3_LEVEL[21]	C3_LEVEL[20]	C3_LEVEL[19]	C3_LEVEL[18]	C3_LEVEL[17]	C3_LEVEL[16]
0X4B	MC3LM	C3_LEVEL[15]	C3_LEVEL[14]	C3_LEVEL[13]	C3_LEVEL[12]	C3_LEVEL[11]	C3_LEVEL[10]	C3_LEVEL[9]	C3_LEVEL[8]
0X4C	BC3LM	C3_LEVEL[7]	C3_LEVEL[6]	C3_LEVEL[5]	C3_LEVEL[4]	C3_LEVEL[3]	C3_LEVEL[2]	C3_LEVEL[1]	C3_LEVEL[0]
0X4D	TC4LM	C4_LEVEL[23]	C4_LEVEL[22]	C4_LEVEL[21]	C4_LEVEL[20]	C4_LEVEL[19]	C4_LEVEL[18]	C4_LEVEL[17]	C4_LEVEL[16]
0X4E	MC4LM	C4_LEVEL[15]	C4_LEVEL[14]	C4_LEVEL[13]	C4_LEVEL[12]	C4_LEVEL[11]	C4_LEVEL[10]	C4_LEVEL[9]	C4_LEVEL[8]
0X4F	BC4LM	C4_LEVEL[7]	C4_LEVEL[6]	C4_LEVEL[5]	C4_LEVEL[4]	C4_LEVEL[3]	C4_LEVEL[2]	C4_LEVEL[1]	C4_LEVEL[0]
0X50	TC5LM	C5_LEVEL[23]	C5_LEVEL[22]	C5_LEVEL[21]	C5_LEVEL[20]	C5_LEVEL[19]	C5_LEVEL[18]	C5_LEVEL[17]	C5_LEVEL[16]
0X51	MC5LM	C5_LEVEL[15]	C5_LEVEL[14]	C5_LEVEL[13]	C5_LEVEL[12]	C5_LEVEL[11]	C5_LEVEL[10]	C5_LEVEL[9]	C5_LEVEL[8]
0X52	BC5LM	C5_LEVEL[7]	C5_LEVEL[6]	C5_LEVEL[5]	C5_LEVEL[4]	C5_LEVEL[3]	C5_LEVEL[2]	C5_LEVEL[1]	C5_LEVEL[0]
0X53	TC6LM	C6_LEVEL[23]	C6_LEVEL[22]	C6_LEVEL[21]	C6_LEVEL[20]	C6_LEVEL[19]	C6_LEVEL[18]	C6_LEVEL[17]	C6_LEVEL[16]
0X54	MC6LM	C6_LEVEL[15]	C6_LEVEL[14]	C6_LEVEL[13]	C6_LEVEL[12]	C6_LEVEL[11]	C6_LEVEL[10]	C6_LEVEL[9]	C6_LEVEL[8]
0X55	BC6LM	C6_LEVEL[7]	C6_LEVEL[6]	C6_LEVEL[5]	C6_LEVEL[4]	C6_LEVEL[3]	C6_LEVEL[2]	C6_LEVEL[1]	C6_LEVEL[0]
0X56	TC7LM	C7_LEVEL[23]	C7_LEVEL[22]	C7_LEVEL[21]	C7_LEVEL[20]	C7_LEVEL[19]	C7_LEVEL[18]	C7_LEVEL[17]	C7_LEVEL[16]
0X57	MC7LM	C7_LEVEL[15]	C7_LEVEL[14]	C7_LEVEL[13]	C7_LEVEL[12]	C7_LEVEL[11]	C7_LEVEL[10]	C7_LEVEL[9]	C7_LEVEL[8]
0X58	BC7LM	C7_LEVEL[7]	C7_LEVEL[6]	C7_LEVEL[5]	C7_LEVEL[4]	C7_LEVEL[3]	C7_LEVEL[2]	C7_LEVEL[1]	C7_LEVEL[0]
0X59	TC8LM	C8_LEVEL[23]	C8_LEVEL[22]	C8_LEVEL[21]	C8_LEVEL[20]	C8_LEVEL[19]	C8_LEVEL[18]	C8_LEVEL[17]	C8_LEVEL[16]

Preliminary

a) (= 1									
0X5A	MC8LM	C8_LEVEL[15]	C8_LEVEL[14]	C8_LEVEL[13]	C8_LEVEL[12]	C8_LEVEL[11]	C8_LEVEL[10]	C8_LEVEL[9]	C8_LEVEL[8]
0X5B	BC8LM	C8_LEVEL[7]	C8_LEVEL[6]	C8_LEVEL[5]	C8_LEVEL[4]	C8_LEVEL[3]	C8_LEVEL[2]	C8_LEVEL[1]	C8_LEVEL[0]
0X5C~	Deserved				Deee				
0X73	Reserved				Rese	rved			
0X74	МКНВ	MK_HBYTE[7]	MK_HBYTE[6]	MK_HBYTE[5]	MK_HBYTE[4]	MK_HBYTE[3]	MK_HBYTE[2]	MK_HBYTE[1]	MK_HBYTE[0]
0X75	MKLB	MK_LBYTE[7]	MK_LBYTE[6]	MK_LBYTE[5]	MK_LBYTE[4]	MK_LBYTE[3]	MK_LBYTE[2]	MK_LBYTE[1]	MK_LBYTE[0]
0X76	BS_CTRL				Prohi	bited			
0X77	HI_RES				Prohi	bited			
0X78	TMR				Prohi	bited			
0X79	BS_OV_UV_SEL				Prohi	bited			
0X7A	OC_SEL		Prohibited						
0X7B	MBIST_UPT_E				Prohi	bited			
0X7C	MBIST_UPM_E				Prohi	bited			
0X7D	MBIST_UPB_E				Prohi	bited			
0X7E	MBIST_UPT_O				Prohi	bited			
0X7F	MBIST_UPM_O				Prohi	bited			
0X80	MBIST_UPB_O				Prohi	bited			
0X81	Reserved		Reserved						
0X82	MDT		Prohibited						
0X83	PWM SHIFT		Reserved						
0X84	ERR_REG	A_OCP_N	A_OTP_N	A_UV_N	A_BSUV	A_BSOV	A_CKERR	A_OVP	Reserved
0X85	ERR_RECORD	A_OCP_N_LATCH	A_OTP_N_LATCH	A_UV_N_LATCH	A_BSUV_LATCH	A_BSOV_LATCH	A_CKERRLATCH	A_OVP_LATCH	Reserved
0X86	ERR_CLEAR	A_OCP_N_CLEAR	A_OTP_N_CLEAR	A_UV_N_CLEAR	A_BSUV_CLEAR	A_BSOV_CLEAR	A_CKERR_CLEAR	A_OVP_CLEAR	Reserved

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD87088 supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats are selected by user via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to address 0/bit0, LREXC.

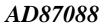
BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
D[7·5]		Input Format	010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
B[4]		Reserved		
[0]		/ML_X LA/LB exchange	0	No exchanged
B[3]			1	L/R exchanged
[0]	PWMR X	PA/PP ovebenge	0	L/R exchanged
B[2]		RA/RB exchange	1	No exchanged
D[4]		LV under voltage	0	2.9V
B[1]	LV_UVSEL	selection	1	2.7V
B[0]	LREXC	Left/Right (L/R)	0	No exchanged
Б[0]	LREXC	Channel exchanged	1	L/R exchanged

• Address 0X01 : State control 2

AD87088 has a built-in PLL and supports multiple MCLK/Fs or BCLK/Fs ratios.

If BCLK_SEL is high, the ratio is changed to BCLK/FS ratios.

On the contrary, the ratio is changed to MCLK/FS ratios.


Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7] BCLK_S		MCLK-less	0	Disable
	DOLK_SEL	(BCLK system)	1	Enable
		Sampling Frequency	00	32/44.1/48kHz
B[6:5]	FS[1:0]		01	64/88.2/96kHz
			1x	128/176.4/192kHz
B[4]		Reserved		

Multiple MCLK/FS or BCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[6:5]=00	B[6:5]=01	B[6:5]=1x
			0000	1024x	512x	256x
			0001	Reset Default	Reset Default	Reset Default
			0001	(64x)	(64x)	(64x)
			0010	128x	128x	128x
		MCLK/Fs or	0011	192x	192x	192x
B[3:0]	PMF[3:0]	BCLK/Fs	0100	256x	256x	256x
		Setup	0101	384x	384x	
			0110	512x	512x	
			0111	576x		Reserved
			1000	768x	Reserved	
			1001	1024x		

Preliminary

Address 0X02 : State control 3

ESMT

AD87088 has mute function including master mute and channel mute.

In one band DRC, master, channel 1, and channel 2 mute will active.

When master mute is enabled, all 2 processing channels are muted. User can mute these 2 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

In three bands DRC, master, channel 1 to channel 6 mute will active.

When master mute is enabled, all 6 processing channels are muted. User can mute these 6 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	EN_CLK_		0	Disabled
B[7]	OUT	PLL Clock Output	1	Enabled
B[6]	MMUTE	Master Mute	0	All channel not muted
Б[0]	IVIIVIO I E	Master Mute	1	All channel muted
P[6]	CM1	Channel 1 Mute	0	Ch1 not muted
B[5]	CIVIT	Channel 1 Mule	1	Only Ch1 muted
D[4]	0140	CM2 Channel 2 Mute	0	Ch2 not muted
B[4]	CIVIZ		1	Only Ch2 muted
D[0]	CM3	Channel 3 Mute	0	Ch3 not muted
B[3]	CIVIS		1	Only Ch3 muted
B [3]	CM4	Channel 4 Mute	0	Ch4 not muted
B[2]	CIVI4	Charmer 4 Mute	1	Only Ch4 muted
D[4]	CM5	Channel 5 Mute	0	Ch5 not muted
B[1]	CIVID		1	Only Ch5 muted
B[0]	CM6		0	Ch6 not muted
5[0]	CM6	Channel 6 Mute	1	Only Ch6 muted

• Address 0X03 : Master volume control

AD87088 supports both master-volume (Address 0X03) and channel-volume control (Address 0X04, 0X05, 0X06, 0X07, 0X08, 0X09) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

-103dB \leq Total volume (Level A + Level B) \leq +24dB.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			00000010	+11.0dB
	MV[7:0]	Master Volume	:	:
			00010111	+0.5dB
			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
	C1V[7:0]	Channel1 Volume	00010100	+2dB
			:	:
BIT[7:0]			00011000	0.0dB
ыт[7.0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Elite Semiconductor Memory Technology Inc.

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			:	:
	C2V[7:0]	Channel2 Volume	00010100	+2dB
			:	:
			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			:	:
			00010100	+2dB
	C3V[7:0]	Channel3 Volume	:	:
			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X07 : Channel 4 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			:	:
		Channel 4 Volume	00010100	+2dB
	C4V[7:0]		:	:
			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X08 : Channel 5 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
		Channel 5 Volume	:	:
	C5V[7:0]		00010100	+2dB
			:	:
BIT[7:0]			00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X09 : Channel 6 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000000	+12.0dB
			00000001	+11.5dB
			:	:
		Channel 6 Volume	00010100	+2dB
	C6V[7:0]		:	:
			00011000	0.0dB
BIT[7:0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X0A/0X0B : Bass/Treble tone boost and cut

EQ11 and EQ12 can be programmed as bass/treble tone boost and cut. When, register with address-0X0C, bit-6, BTE is set to high, the EQ-11 and EQ-12 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gain setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

• Address 0X0C : State control 4

The AD87088 provides several DSP setting as following.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	SRBP		0	Surround enable
B[7]	SKDP	Surround bypass	1	Surround bypass
D[6]	BTE	Bass/Treble Selection	0	Bass/Treble Disable
B[6]	DIL	bypass	1	Bass/Treble Enable
D[5]	DEQE	Dupamia EQ apabla	0	DEQ Disable
B[5]		Dynamic EQ enable	1	DEQ enable
D[4]	1] NGE Noise ga	Noise gete enchle	0	Noise gate disable
B[4]		Noise gate enable	1	Noise gate enable
B[3]	EQL	EQ Link	0	Each channel uses individual EQ
Б[3]		EQLIIK	1	Channel-2 uses channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	0	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	EQ bypass	0	EQ enable
D[1]	DOFD	EQ Dypass	1	EQ bypass
BIOI	ЦОВ	DC blocking HPF	0	HPF dc enable
B[0]	пгр	HPB bypass	1	HPF dc bypass

Address 0X0D, 0X0E ,0X0F,0X10,0X11,0X12, 0X13,0X14 : Channel configuration registers

AD87088 can configure each channel to enable or bypass DRC and channel volume and select the limiter set.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION		
B[7:4]		Reserved				
D[0]	CxPCBP	Channel x Power	0	Channel x PC enable		
B[3]	CXPCDP	Clipping bypass	1	Channel x PC bypass		
D[0]		BP Channel x DRC bypass	0	Channel x DRC enable		
B[2]	CXDRCDP		1	Channel x DRC bypass		
B[1]		Reserved				
P[0]		Channel x Volume	0	Channel x's master volume operation		
B[0]	CxVBP	bypass	1	Channel x's master volume bypass		

Address 0X0D and 0X0E; where x=1 or 2

Address 0X0F, 0X10, 0X11, and 0X12; where x=3, 4, 5, 6

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
		Channel y DBC bypage	0	Channel x DRC enable
B[2]	CxDRCBP	Channel x DRC bypass	1	Channel x DRC bypass
B[1]		Reserved		
PIOI	CxVBP	Channel x Volume	0	Channel x volume operation
B[0]	CXVDP	bypass	1	Channel x volume bypass

Address 0X13, and 0X14; where x=7 or 8

C7DRCBP/C8DRCBP use to control L/R post DRC.

The gains are internally setting and they can't be changed via I2C control.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
P[2]			0	Channel x DRC enable
B[2]	CxDRCBP	Channel x DRC bypass	1	Channel x DRC bypass
B[1:0]		Reserved		

• Address 0X15, 0X16, 0X17, 0X18 : DRC limiter attack/release rate

The AD87088 has 4 independent DRC set, each DRC has its own attack/release rate.

 B[7:5] Catack rate DRC attack rate DRC attack rate DI10 DRC attack rate DI11 D2264 dB/ms DI11 D.2264 dB/ms DI11 D.2264 dB/ms DI11 D.112 dB/ms DI11 D.052 dB/ms DI11 D.0563 dB/ms DI11 D.0563 dB/ms DI11 D.0501 dB/ms DI11 D.0501 dB/ms DI11 D.0501 dB/ms DI11 D.05106 dB/ms DI11 D.0264 dB/ms DI11 D.0299 dB/ms DI11 D.0208 dB/ms DI11 D.0172 dB/ms DI11 D.0172 dB/ms DI11 D.0174 dB/ms DI11 D.0112 dB/ms DI11 D.0112 dB/ms DI11 D.0112 dB/ms DI11 D.0112 dB/ms DI11 D.014 d	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5] LAx[3:0] DRC attack rate 0010 2.182 dB/ms 0100 1.333 dB/ms 0100 1.333 dB/ms 0101 0.889 dB/ms 0101 0.4528 dB/ms 0111 0.2264 dB/ms 0111 0.2264 dB/ms 0101 0.1121 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1010 0.0902 dB/ms 1011 0.0752 dB/ms 1011 0.0563 dB/ms 1100 0.0645 dB/ms 1110 0.0563 dB/ms 1110 0.0501 dB/ms 1111 0.0451 dB/ms 1111 0.0451 dB/ms 0001 0.1371 dB/ms 0101 0.0264 dB/ms 0010 0.0743 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 1011 0.0137 dB/ms 0101 0.0172 d				0000	3 dB/ms
B[7:5] LAx[3:0] DRC attack rate 0011 1.846 dB/ms 0100 1.333 dB/ms 0101 0.889 dB/ms 0110 0.4528 dB/ms 0110 0.4528 dB/ms 0111 0.2264 dB/ms 0111 0.2264 dB/ms 1000 0.15 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1001 0.0121 dB/ms 1011 0.00902 dB/ms 1011 0.0752 dB/ms 1100 0.0645 dB/ms 1100 0.0645 dB/ms 1100 0.0501 dB/ms 1110 0.0501 dB/ms 1110 0.0501 dB/ms 0001 0.1371 dB/ms 0011 0.0451 dB/ms 0010 0.1371 dB/ms 0011 0.0499 dB/ms 0101 0.0264 dB/ms 0101 0.0208 dB/ms 0110 0.0208 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 0101 0.0172 dB/ms 1010 0.0147 dB/ms 0101 0.0173 dB/ms 1010 0.0147 dB/ms 10101 0.0134				0001	2.667 dB/ms
B[7:5] LAx[3:0] 0100 1.333 dB/ms 0101 0.4528 dB/ms 0111 0.2264 dB/ms 1000 0.15 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1010 0.0902 dB/ms 1011 0.0752 dB/ms 1010 0.0012 dB/ms 1100 0.0645 dB/ms 1101 0.0501 dB/ms 1101 0.0501 dB/ms 1101 0.0501 dB/ms 1101 0.0501 dB/ms 1111 0.0451 dB/ms 1101 0.0501 dB/ms 1101 0.0501 dB/ms 0010 0.1371 dB/ms 0011 0.0493 dB/ms 0010 0.01360 dB/ms 0101 0.0209 dB/ms 0101 0.0208 dB/ms 0101 0.0208 dB/ms 0101 0.0172 dB/ms 1001 0.0172 dB/ms 1010 0.0134 dB/ms 1010 0.0134 dB/ms 1010 0.0112 dB/ms				0010	2.182 dB/ms
B[7:5] LAx[3:0] DRC attack rate 010 0.4528 dB/ms 0111 0.2264 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1010 0.0902 dB/ms 1011 0.0902 dB/ms 1011 0.0752 dB/ms 1010 0.0645 dB/ms 1010 0.0645 dB/ms 1100 0.0645 dB/ms 1101 0.0563 dB/ms 1101 0.0563 dB/ms 1111 0.0561 dB/ms 1101 0.01371 dB/ms 0010 0.1371 dB/ms 0010 0.0134 dB/ms 0101 0.0299 dB/ms 0101 0.0198 dB/ms 1001 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0134 dB/ms 1010 0.0134 dB/ms 1010 0.01134 dB/ms 1100 0.01134 dB/				0011	1.846 dB/ms
B[7:5] LAx[3:0] DRC attack rate 0110 0.4528 dB/ms 1000 0.15 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1010 0.0902 dB/ms 1010 0.0902 dB/ms 1011 0.0752 dB/ms 1100 0.0645 dB/ms 1100 0.0645 dB/ms 1101 0.0501 dB/ms 1111 0.0501 dB/ms 1110 0.0501 dB/ms 1111 0.0451 dB/ms 1111 0.0451 dB/ms 0000 0.5106 dB/ms 0011 0.01371 dB/ms 0011 0.0147 dB/ms 9[3:0] LRx[3:0] DRC release rate 0110 0.0294 dB/ms 0101 0.0208 dB/ms 0101 0.0299 dB/ms 0101 0101 0.0208 dB/ms 0110 0.0198 dB/ms 0110 0.0172 dB/ms 1010 0.0172 dB/ms 1010 0.0174 dB/ms 1011 0.0172 dB/ms 1010 0.0174 dB/ms 1010 0.0174 dB/ms 1011 0.0172 dB/ms 1010 0.0174 dB/ms 1010				0100	1.333 dB/ms
B[7:5] LAx[3:0] DRC attack rate 0111 0.2264 dB/ms 1000 0.15 dB/ms 1001 0.1121 dB/ms 1011 0.0902 dB/ms 1011 0.0752 dB/ms 1010 0.00645 dB/ms 1101 0.0563 dB/ms 1101 0.0501 dB/ms 1110 0.0501 dB/ms 1110 0.0501 dB/ms 1111 0.0451 dB/ms 1111 0.0451 dB/ms 0000 0.5106 dB/ms 0011 0.0171 dB/ms 0010 0.0743 dB/ms 0011 0.0299 dB/ms 0101 0.0299 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0208 dB/ms 0101 0.0299 dB/ms 0101 0.0208 dB/ms 0111 0.0208 dB/ms 0101 0.0172 dB/ms 1001 0.0172 dB/ms 1010 0.0134 dB/ms 1011 0.0134 dB/ms 1011 0.0117 dB/ms 1100 0.0112 dB/ms				0101	0.889 dB/ms
B[7:5] LAx[3:0] DRC attack rate 1000 0.15 dB/ms 1001 0.1121 dB/ms 1010 0.0902 dB/ms 1011 0.0752 dB/ms 1011 0.0563 dB/ms 1100 0.0645 dB/ms 1101 0.0563 dB/ms 1101 0.0563 dB/ms 1111 0.0561 dB/ms 1111 0.05106 dB/ms 1111 0.0451 dB/ms 1111 0.0451 dB/ms 1111 0.05106 dB/ms 0001 0.1371 dB/ms 0010 0.1371 dB/ms 0010 0.0743 dB/ms 0010 0.0360 dB/ms 0100 0.0360 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0101 0.0208 dB/ms 0110 0.0264 dB/ms 0101 0.0172 dB/ms 1000 0.0198 dB/ms 1010 0.0147 dB/ms 1010 0.0134 dB/ms 1010 0.0134 dB/ms 1101 0.0112 dB/ms				0110	0.4528 dB/ms
 B[3:0] LRx[3:0] LRX[3:0]<td>P[7:5]</td><td>1 4 1 2 .01</td><td>DPC attack rate</td><td>0111</td><td>0.2264 dB/ms</td>	P [7:5]	1 4 1 2 .01	DPC attack rate	0111	0.2264 dB/ms
B[3:0] LRx[3:0] DRC release rate 1010 0.0902 dB/ms 1011 0.0752 dB/ms 1100 0.0645 dB/ms 1100 0.0645 dB/ms 1110 0.0501 dB/ms 1111 0.0501 dB/ms 1111 0.0451 dB/ms 0000 0.5106 dB/ms 0010 0.1371 dB/ms 0011 0.0499 dB/ms 0010 0.0360 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0100 0.0198 dB/ms 0101 0.02172 dB/ms 1001 0.0147 dB/ms 1010 0.0134 dB/ms 1010 0.0134 dB/ms 1011 0.0134 dB/ms 1101 0.0117 dB/ms 1100 0.0112 dB/ms	ы, тэ	LAX[3.0]	DRC allack fale	1000	0.15 dB/ms
B[3:0] LRx[3:0] DRC release rate 1011 0.0752 dB/ms 1100 0.0645 dB/ms 1101 0.0563 dB/ms 1111 0.0501 dB/ms 1111 0.0451 dB/ms 0000 0.5106 dB/ms 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0010 0.0743 dB/ms 0100 0.0360 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0100 0.0198 dB/ms 0110 0.0217 dB/ms 1001 0.0172 dB/ms 1011 0.0137 dB/ms 1011 0.0137 dB/ms 1011 0.0137 dB/ms 1100 0.0147 dB/ms 1011 0.0117 dB/ms 1100 0.0134 dB/ms 1100 0.0114 dB/ms				1001	0.1121 dB/ms
B[3:0] LRx[3:0] DRC release rate 1100 0.0645 dB/ms 1101 0.0563 dB/ms 1110 0.0501 dB/ms 0000 0.5106 dB/ms 1111 0.0451 dB/ms 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0010 0.0360 dB/ms 0010 0.0360 dB/ms 0101 0.0499 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0110 0.0208 dB/ms 0101 0.0208 dB/ms 0110 0.0112 dB/ms 1001 0.0137 dB/ms 1011 0.0137 dB/ms 1011 0.0137 dB/ms 1011 0.0112 dB/ms				1010	0.0902 dB/ms
B[3:0] LRx[3:0] DRC release rate 1101 0.0563 dB/ms 1110 0.0501 dB/ms 1111 0.0451 dB/ms 0000 0.5106 dB/ms 0010 0.1371 dB/ms 0011 0.0743 dB/ms 0011 0.0499 dB/ms 0100 0.0360 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0110 0.0299 dB/ms 0101 0.0208 dB/ms 0111 0.0208 dB/ms 0101 0.0172 dB/ms 1100 0.0147 dB/ms 1010 0.0137 dB/ms 1011 0.0137 dB/ms 1101 0.0112 dB/ms 1101 0.0112 dB/ms				1011	0.0752 dB/ms
B[3:0] LRx[3:0] DRC release rate 1110 0.0501 dB/ms 0000 0.5106 dB/ms 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0010 0.0743 dB/ms 0011 0.0499 dB/ms 0100 0.0360 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0110 0.0264 dB/ms 0110 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1011 0.0137 dB/ms 1011 0.0137 dB/ms 1100 0.0147 dB/ms 1110 0.0134 dB/ms 1101 0.0117 dB/ms 1110 0.0112 dB/ms				1100	0.0645 dB/ms
B[3:0] LRx[3:0] DRC release rate 0111 0.0451 dB/ms 0000 0.5106 dB/ms 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0010 0.0743 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0264 dB/ms 0101 0.0264 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1011 0.0137 dB/ms 1011 0.0137 dB/ms 1101 0.0117 dB/ms 1101 0.0113 dB/ms 1101 0.0113 dB/ms 1101 0.0113 dB/ms				1101	0.0563 dB/ms
B[3:0] LRx[3:0] DRC release rate 0000 0.5106 dB/ms 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0101 0.0499 dB/ms 0101 0.0299 dB/ms 0101 0.0299 dB/ms 0110 0.0208 dB/ms 0110 0.0208 dB/ms 0111 0.0208 dB/ms 1000 0.01172 dB/ms 1001 0.0172 dB/ms 1011 0.0137 dB/ms 1100 0.0134 dB/ms 1100 0.0117 dB/ms 1110 0.0112 dB/ms				1110	0.0501 dB/ms
B[3:0] LRx[3:0] DRC release rate 0001 0.1371 dB/ms 0010 0.0743 dB/ms 0011 0.0499 dB/ms 0100 0.0360 dB/ms 0100 0.0299 dB/ms 0110 0.0264 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1011 0.0137 dB/ms 1011 0.0134 dB/ms 1100 0.01134 dB/ms 1101 0.0112 dB/ms				1111	0.0451 dB/ms
B[3:0] LRx[3:0] DRC release rate 0010 0.0743 dB/ms 0011 0.0499 dB/ms 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0101 0.0264 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1000 0.0147 dB/ms 1011 0.0137 dB/ms 1011 0.0134 dB/ms 1100 0.0117 dB/ms 1101 0.0112 dB/ms				0000	0.5106 dB/ms
B[3:0] LRx[3:0] DRC release rate 0011 0.0499 dB/ms 0100 0.0360 dB/ms 0110 0.0299 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 1000 0.01198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0134 dB/ms 1100 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms				0001	0.1371 dB/ms
B[3:0] LRx[3:0] DRC release rate 0100 0.0360 dB/ms 0101 0.0299 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0134 dB/ms 1100 0.01134 dB/ms 1100 0.0112 dB/ms				0010	0.0743 dB/ms
B[3:0] LRx[3:0] DRC release rate 0101 0.0299 dB/ms 0110 0.0264 dB/ms 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0137 dB/ms 1011 0.0137 dB/ms 1100 0.01134 dB/ms 1101 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms				0011	0.0499 dB/ms
B[3:0] LRx[3:0] DRC release rate 0110 0.0264 dB/ms 1000 0.0198 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0137 dB/ms 1011 0.0134 dB/ms 1100 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms 1110 0.0112 dB/ms				0100	0.0360 dB/ms
B[3:0] LRx[3:0] DRC release rate 0111 0.0208 dB/ms 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0137 dB/ms 1100 0.0134 dB/ms 1100 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms				0101	0.0299 dB/ms
B[3:0] LRx[3:0] DRC release rate 1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0137 dB/ms 1010 0.0134 dB/ms 1100 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms 1110 0.0112 dB/ms				0110	0.0264 dB/ms
1000 0.0198 dB/ms 1001 0.0172 dB/ms 1010 0.0147 dB/ms 1011 0.0137 dB/ms 1100 0.01134 dB/ms 1101 0.0117 dB/ms 1101 0.0117 dB/ms 1101 0.0112 dB/ms	BI3:01	1 Dv[2.0]	DBC roloaco rato	0111	0.0208 dB/ms
1010 0.0147 dB/ms 1011 0.0137 dB/ms 1100 0.0134 dB/ms 1101 0.0117 dB/ms 1110 0.0112 dB/ms	D[3.0]			1000	0.0198 dB/ms
1011 0.0137 dB/ms 1100 0.0134 dB/ms 1101 0.0117 dB/ms 1110 0.0112 dB/ms				1001	0.0172 dB/ms
1100 0.0134 dB/ms 1101 0.0117 dB/ms 1110 0.0112 dB/ms				1010	0.0147 dB/ms
1101 0.0117 dB/ms 1110 0.0112 dB/ms				1011	0.0137 dB/ms
1110 0.0112 dB/ms				1100	0.0134 dB/ms
				1101	0.0117 dB/ms
1111 0.0104 dB/ms				1110	0.0112 dB/ms
				1111	0.0104 dB/ms

Address 0X15, 0X16, 0X17, and 0X18; where x=1, 2, 3, 4

Elite Semiconductor Memory Technology Inc.

Publication Date: Feb. 2018 Revision: 0.3 48/84

• Address 0X1A : State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
			0	Stereo
B[6]	MONO_EN	MONO enable register	1	MONO_EN=1 and MONO_KEY=3006(hex)
			I	Output will become mono
DIEI		Software reset	0	Reset
B[5]	SW_RSTB	Soliware reset	1	Normal operation
D[4]	LVUV_FADE	Low Under Voltage	0	No Fade
B[4]	LVUV_FADE	Fade	1	Fade
B[3]		Reserved		
	DIS_MCLK_DET	Disable MCLK detect	0	Enable MCLK detect circuit
B[2]	DIS_MCLK_DET	circuit	1	Disable MCLK detect circuit
D[1]		Dowor opving mode	0	Disable
B[1]	QT_EN	Power saving mode	1	Enable
PIOI		DW/M modulation	0	Qua-ternary
B[0]	PWM_SEL	PWM_SEL PWM modulation	1	Ternary

• Address 0X1B : State control 6

AD87088 can disable HV under voltage detection via bit 7.

AD87088 support multi-level HV under voltage detection via bit2~ bit0, using this function, AD87088 will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply. AD87088 can support one band, two band, and three band DRC selection via bit6~bit5.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	DIS_HVUV	Disable HV under	0	Enable
B[7]		voltage selection	1	Disable
			00	One band DRC
B[6:5]	DRC_SEL	DRC mode selection	01	Two band DRC
			1X	Three band DRC
B[4:3]		Reserved		
		UV detection level	000	4V
			001	7.2V
			010	9.7 V
B[3:0]	HV_UV SEL		011	13.2V
			100	15.5 V
			101	19.5 V
			Others	7.2V

• Address 0X1C: State control 7

The $\overline{\text{ERROR}}$ pin of AD87088 is a dual function pin. It is treated as a l²C device address selection input when B[6] is set as low. It will become as an ERROR output pin when B[6] is set as high.

AD87088 can turn on delta quaternary modulation via bit 5.

AD87088 provide 2 kind of fade in/out speed via bit 2. One is 1.25ms from mute to 0dB. The other one is 10ms from mute to 0dB.

AD87088 provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	Х	Reserved		
B[6]	A_SEL_FAULT	I2C address selection	0	I2C device address selection
		or ERROR output	1	ERROR output
DIE		Delta quaternary	0	Disable
B[5]	D_MOD	modulation	1	enable
D[4]		DE Disable noise gate fade-	0	Fade
B[4]	DIS_NG_FADE		1	No fade
[2]	QD_EN	Quaternary and delta	0	Disable
B[3]	QD_EN	quaternary switching	1	enable
D [0]	FADE_SPEED	Fade in/out speed	0	1.25ms
B[2]	FADE_SPEED	selection	1	10ms
			00	x1/8
D[1.0]		Noise acto acin	01	x1/4
B[1:0]	NG_GAIN[1:0]	Noise gate gain	10	x1/2
			11	Mute

• Address 0X1D ~0X2D : User-defined coefficients registers

An on-chip RAM in AD87088 stores user-defined EQ, mixing, pre-scale, post-scale coefficients...etc. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X1D), five sets of registers (address 0X1E to 0X2C) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X2D) to control access of the coefficients in the RAM..

Address 0X1D

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] CFA[7:0]	Coefficient RAM base	0000000		
			address	00000000	

Address 0X1E, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C1B[23:16]	Top 8-bits of		
Б[7.0]		coefficients A1		

Address 0X1F, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7·0]		Middle 8-bits of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X20, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ:01		Bottom 8-bits of		
B[7:0]	C1B[7:0]	coefficients A1		

Address 0X21, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	000100.401	Top 8-bits of		
B[7:0]	0] C2B[23:16]	coefficients A2		

Address 0X22, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C2B[15:8]	Middle 8-bits of		
Б[7.0]		coefficients A2		

Address 0X23, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	00017-01	Bottom 8-bits of		
B[7:0]	[7:0] C2B[7:0]	coefficients A2		

Address 0X24, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C3B[23:16]	Top 8-bits of		
Ы[7.0]		coefficients B1		

Address 0X25, B1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C3B[15:8]	Middle 8-bits of		
Ы1.0]		coefficients B1		

Address 0X26, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C3B[7:0]	Bottom 8-bits of		
B[7:0]		coefficients B1		

Address 0X27, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	C 4D[00:46]	Top 8-bits of		
B[7:0]	C4B[23:16]	coefficients B2		

Address 0X28, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	Middle 8-bits of			
B[7:0]	C4B[15:8]	coefficients B2		

Address 0X29, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	:0] C4B[7:0]	Bottom 8-bits of		
B[7:0]		coefficients B2		

Address 0X2A, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	[7:0] C5B[23:16]	Top 8-bits of		
Б[7.0]		coefficients A0		

Address 0X2B, A0cf2

I	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
Б		Middle 8-bits of			
Б	[7:0]	C5B[15:8]	coefficients A0		

Address 0X2C, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]		Bottom 8-bits of		
B[7:0]	C5B[7:0]	coefficients A0		

Address 0X2D, CfRW

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
D[6]	RBS	RAM bank selection	0	Select RAM bank 0
B[6]	KD3	RAW Dank Selection	1	Select RAM bank 1
D[5]	R3	Enable of reading three	0	Read complete
B[5]	КЭ	coefficients from RAM	1	Read enable
D[4]	W3	Enable of writing three	0	Write complete
D[4]	B[4] W3	coefficients to RAM	1	Write enable
[0]	RA	Enable of reading a set of	0	Read complete
B[3]	КA	coefficients from RAM	1	Read enable
[0]	R1	Enable of reading a single	0	Read complete
B[2]	ΓI	coefficients from RAM	1	Read enable
D[4]	14/4	Enable of writing a set of	0	Write complete
B[1]	WA	coefficients to RAM	1	Write enable
P[0]	W1	Enable of writing a single	0	Write complete
B[0]	VVI	coefficient to RAM	1	Write enable

• Address 0X33 : Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from default modulation scheme into power saving mode scheme. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level - programmed switching window (default (26-5)*40ns), the modulation algorithm will change back to default modulation scheme.

Switching scheme is related to QT_EN (address0X1A, B[1]), D_MOD(address0X1C, B[5]), and QD_EN(address0X1C, B[3]).

AD87088 has three type switching schemes and they share the same switching scheme.

One time will only have one switching scheme.

Case1: QT_EN=1, D_MOD=0, QD_EN=0. The default modulation scheme is quaternary and power saving mode scheme is ternary.

Case2: QT_EN=1, D_MOD=1, QD_EN=0. The default modulation scheme is delta quaternary and power saving mode scheme is ternary.

Case3: QT_EN=0, D_MOD=0, QD_EN=1. The default modulation scheme is quaternary and power saving mode scheme is delta quaternary.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	2
			001	3
			010	4
D[7:5]	SW_WINDOW	Power saving mode	011	5
B[7:5]	300_00INDO00	switching window	100	6
			101	7
			110	8
			111	9
			00000	4
			00001	4
			:	:
			01101	26
D[4:0]	QT_SW_LEVEL	Power saving mode	01110	28
B[4:0]	QT_SW_LEVEL	switching level	01111	30
			10000	32
			:	:
			11110	60
			11111	62

• Address 0X34/0X35: Volume fine tune

AD87088 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from 0dB \sim -0.375dB and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

Address 0X34

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]		Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[5·4]		Channel 1 Volume Fine	01	-0.125dB
B[5:4]	C1V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
0.01	C2V_FT	Channel 2 Volume Fine	01	-0.125dB
B[3:2]	62V_F1	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
B[1:0]	C3V_FT	Channel 3 Volume Fine	01	-0.125dB
D[1.0]	63V_F1	Tune	10	-0.25dB
			11	-0.375dB

Address 0X35

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]	C4V_FT	Channel 4 Volume Fine	01	-0.125dB
B[7:6]	C4V_F1	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[5·4]	C5V_FT	Channel 5 Volume Fine	01	-0.125dB
B[5:4]	COV_FI	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
0.01	C6V_FT	Channel 6 Volume Fine	01	-0.125dB
B[3:2]	COV_FI	Tune	10	-0.25dB
			11	-0.375dB
B[1:0]		Reserved		

• Address 0X37 : Device number and Version number

Device number and version number are the ID for the device.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]	DN	Device number	0101	Identification code
B[3:0]	VN	Version number	0010	Identification code

• Address 0X42 : level meter clear

AD87088 has 8 set of level meter which hold the maximum absolute value.

Each level meter has its own level meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום	C1_CLR		0	No clear
B[7]		Clear CH1 level meter	1	Clear
DIGI		Clear CH2 lovel motor	0	No clear
B[6]	C2_CLR	Clear CH2 level meter	1	Clear
DIEI			0	No clear
B[5]	C3_CLR	Clear CH3 level meter	1	Clear
P[4]		Clear CH4 lovel meter	0	No clear
D[4]	B[4] C4_CLR	4_CLR Clear CH4 level meter	1	Clear

Elite Semiconductor Memory Technology Inc.

D[2]	B[3] C5 CLR	LR Clear CH5 level meter	0	No clear
B[3]	C5_CLK		1	Clear
	C6 CLR	Clear CH6 level meter	0	No clear
B[2]	CO_CLK	Clear Cho level meter	1	Clear
D[4]			0	No clear
B[1]	C7_CLR	Clear CH7 level meter	1	Clear
PI01	C8 CLR	Clear CH8 lovel motor	0	No clear
B[0]	CO_CLK	8_CLR Clear CH8 level meter	1	Clear

• Address 0X43 : Power meter clear

AD87088 has 8 set of level meter which continue update RMS value.

Each level meter has its own power meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום			0	No clear
B[7]		Clear CH1 power meter	1	Clear
DIGI		Clear CH2 power motor	0	No clear
B[6]	CZ_CLK_RIVIS	Clear CH2 power meter	1	Clear
		Clear CH3 power meter	0	No clear
B[5]		Clear CH3 power meter	1	Clear
D[4]		Clear CH4 power motor	0	No clear
B[4]		Clear CH4 power meter	1	Clear
0101		Clear CH5 level meter	0	No clear
B[3]	C5_CLR_RMS		1	Clear
וכום	C6_CLR_RMS	Clear CH6 level meter	0	No clear
B[2]			1	Clear
D[4]		Clear CHZ lavel meter	0	No clear
B[1]	C7_CLR_RMS	Clear CH7 level meter	1	Clear
P[0]			0	No clear
B[0]	C8_CLR_RMS	Clear CH8 level meter	1	Clear

• Address 0X44 : Top 8 bit of C1 level meter

In one band DRC, channel-1 level meter is used for L channel.

In two/three bands DRC, channel-1 level meter is high frequency path of L channel.

The addresses to show channel-1 level meter are 0X44, 0X45, and 0X46.

E	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] C1 LEVEL T	Top 8 bits of channel 1	0000000	Reset value	
Ы	[7:0]	C1_LEVEL_T	level meter	Х	Read out

• Address 0X45 : Middle 8 bit of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	:0] C1_LEVEL_M	Middle 8 bits of channel 1	0000000	Reset value
Ы1.0]		level meter	Х	Read out

• Address 0X46 : Bottom 8 bit of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C1_LEVEL_B	Bottom 8 bits of channel 1	0000000	Reset value
B[7:0]		level meter	Х	Read out

• Address 0X47 : Top 8 bit of C2 level meter

In one band DRC, channel-2 level meter is used for R channel.

In two/three bands DRC, channel-2 level meter is high frequency path of R channel.

The addresses to show channel-2 level meter are 0X47, 0X48, and 0X49.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2_LEVEL_T	Top 8 bits of channel 2	0000000	Reset value
		level meter	Х	Read out

• Address 0X48 : Middle 8 bit of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
וסיבום	7:0] C2_LEVEL_M	Middle 8 bits of channel 2	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X49 : Bottom 8 bit of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Bottom 8 bits of channel 2	0000000	Reset value
B[7:0] C2_LEVEL_I	UZ_LEVEL_D	level meter	Х	Read out

• Address 0X4A : Top 8 bit of C3 level meter

In one/two bands DRC, channel-3 level meter is no use.

In three bands DRC, channel-3 level meter is low frequency path of L channel.

The addresses to show channel-3 level meter are 0X4A, 0X4B, and 0X4C.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ:01	B[7:0] C3_LEVEL_T	Top 8 bits of channel 3	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X4B : Middle 8 bit of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C3_LEVEL_M	Middle 8 bits of channel 3	0000000	Reset value
B[7:0]		level meter	Х	Read out

• Address 0X4C : Bottom 8 bit of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] C3_LEVEL_B	Bottom 8 bits of channel 3	0000000	Reset value
Ы[7.0]		level meter	Х	Read out

• Address 0X4D : Top 8 bit of C4 level meter

In one/two bands DRC, channel-4 level meter is no use.

In three bands DRC, channel-4 level meter is low frequency path of R channel.

The addresses to show channel-4 level meter are 0X4D, 0X4E, and 0X4F.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] C4_LEVEL_T	Top 8 bits of channel 4	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X4E : Middle 8 bit of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C4_LEVEL_M	Middle 8 bits of channel 4	0000000	Reset value	
		level meter	Х	Read out

• Address 0X4F : Bottom 8 bit of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C4_LEVEL_B	Bottom 8 bits of channel 4	0000000	Reset value	
	C4_LEVEL_B	level meter	Х	Read out

• Address 0X50 : Top 8 bit of C5 level meter

In one band DRC, channel-5 level meter is no use.

In two/three bands DRC, channel-5 level meter is band pass frequency path of L channel.

The addresses to show channel-5 level meter are 0X50, 0X51, and 0X52.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C5_LEVEL_T		Top 8 bits of channel 5	0000000	Reset value
	level meter	Х	Read out	

• Address 0X51 : Middle 8 bit of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	Middle 8 bits of channel 5	0000000	Reset value	
B[7:0]	C5_LEVEL_M	level meter	Х	Read out

• Address 0X52 : Bottom 8 bit of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C5_LEVEL_B	Bottom 8 bits of channel 5	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X53 : Top 8 bit of C6 level meter

In one band DRC, channel-6 level meter is no use.

In two/three bands DRC, channel-6 level meter is band pass frequency path of R channel.

The addresses to show channel-6 level meter are 0X53, 0X54, and 0X55.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C6_LEVEL_T	Top 8 bits of channel 6	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X54 : Middle 8 bit of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]] C6_LEVEL_M	Middle 8 bits of channel 6	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X55 : Bottom 8 bit of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]		Bottom 8 bits of channel 6	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X56 : Top 8 bit of C7 level meter

In one band DRC, channel-7 level meter is no use.

In two/three bands DRC, channel-7 level meter is summation path of L channel.

The addresses to show channel-7 level meter are 0X56, 0X57, and 0X58.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Top 8 bits of channel 7	0000000	Reset value
B[7:0]	C7_LEVEL_T	level meter	Х	Read out

• Address 0X57 : Middle 8 bit of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
וסיבום		Middle 8 bits of channel 7	0000000	Reset value
B[7:0]	C7_LEVEL_M	level meter	Х	Read out

• Address 0X58 : Bottom 8 bit of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C7_LEVEL_B	Bottom 8 bits of channel 7	0000000	Reset value
B[7:0]		level meter	Х	Read out

• Address 0X59 : Top 8 bit of C8 level meter

In one band DRC, channel-8 level meter is no use.

In two/three bands DRC, channel-8 level meter is summation path of L channel.

The addresses to show channel-8 level meter are 0X59, 0X5A, and 0X5B.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
PIZ:01	[7:0] C8_LEVEL_T	Top 8 bits of channel 8	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X5A : Middle 8 bit of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
PIZ:01	B[7:0] C8_LEVEL_M	Middle 8 bits of channel 8	0000000	Reset value
Б[7.0]		level meter	Х	Read out

• Address 0X5B : Bottom 8 bit of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]		Bottom 8 bits of channel 8	0000000	Reset value
⊿[1.0]	C8_LEVEL_B	level meter	Х	Read out

• Address 0X74 : MONO_KEY high byte

If PBTL pin is tied to LOW, AD87088 can be configured to MONO type by setting MONO_EN=1 & MONO_KEY=3006 (hex).

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] MK_HBYTE MONO KEY hig		others	Stereo
Б[7.0]		WONO KEY NIGN Dyte	00110000	Mono

• Address 0X75 : MONO_KEY low byte

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ:01	MK LBYTE	MONO KEY low byte	others	Stereo
B[7:0]			00000110	Mono

• Address 0X84 : Protection register

The protection registers will show what kind of protection occurs.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	A_OCP_N		0	OC occur
	A_OCF_N	OCP register	1	Normal
B[6]	A_OTP_N	OTP register	0	OT occur
Б[0]	A_OTP_N	OTP register	1	Normal
PIEI	A_UV_N	LIV register	0	UV occur
B[5]	A_0V_N	UV register	1	Normal
D[4]			0	BSUV occur
B[4]	A_BSUV	BSUV register	1	Normal
B[3]	A_BSOV	BSOV register	0	BSOV occur
Б[Э]	A_630V	BSOV Tegister	1	Normal
וכום		CKEPP register	0	CKERR occur
B[2]	A_CKERR	CKERR register	1	Normal
P[1]	A_OVP		0	OV occur
B[1]		OVP register	1	Normal

• Address 0X85 : Protection latch register

The protection registers will show what kind of protection ever occurred.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	A_OCP_N_LATCH	OCD latab register	0	OC ever occur
		OCP latch register	1	Normal
DICI	A_OTP_N_LATCH	OTP latch register	0	OT ever occur
B[6]			1	Normal
B[5]	A_UV_N_LATCH	UV latch register	0	UV ever occur
			1	Normal
B[4]	A_BSUV_LATCH	BSUV latch register	0	BSUV ever occur
			1	Normal
B[3]	A_BSOV_LATCH	BSOV latch register	0	BSOV ever occur
Б[Э]			1	Normal
	A_CKERR_LATCH	CKERR latch register	0	CKERR ever occur
B[2]			1	Normal
P [1]	A_OVP_LATCH	OV/D latch register	0	OV ever occur
B[1]		OVP latch register	1	Normal

• Address 0X86 : Protection latch register

The protection latch registers will show what kind of protection ever occurred.

Using the protection clear registers can clear the corresponding protection latch registers.

BIT	NAME	DESCRIPTION VA		FUNCTION
B[7]	A_OCP_N_CLEAR	OCP latch clear register	0	No clear
			1	Clear
B[6]	A_OTP_N_CLEAR	OTP latch clear register	0	No clear
			1	Clear
B[5]	A_UV_N_CLEAR	UV latch clear register	0	No clear
			1	Clear
B[4]	A_BSUV_CLEAR	BSUV latch clear register	0	No clear
			1	Clear
B[3]	A_BSOV_CLEAR	BSOV latch clear register	0	No clear
			1	Clear
B[2]	A_CKERR_CLEAR	CKERR latch clear	0	No clear
		register	1	Clear
B[1]	A_OVP_CLEAR		0	No clear
		OVP latch clear register	1	Clear

RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write 1 to R1 bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient in I2C address-0X1E
- 4. Read middle 8-bits of coefficient in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient in I2C address-0X20

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write 1 to RA bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient A1 in I2C address-0X1E
- 4. Read middle 8-bits of coefficient A1in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X20
- 6. Read top 8-bits of coefficient A2 in I2C address-0X21
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X22
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X23
- 9. Read top 8-bits of coefficient B1 in I2C address-0X24
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X25
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X26
- 12. Read top 8-bits of coefficient B2 in I2C address-0X27
- 13. Read middle 8-bits of coefficient B2 in I2C address-0X28
- 14. Read bottom 8-bits of coefficient B2 in I2C address-0X29
- 15. Read top 8-bits of coefficient A0 in I2C address-0X2A
- 16. Read middle 8-bits of coefficient A0 in I2C address-0X2B
- 17. Read bottom 8-bits of coefficient A0 in I2C address-0X2C

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient in I2C address-0X1E
- 3. Write middle 8-bits of coefficient in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient in I2C address-0X20
- 5. Write 1 to W1 bit and write 1/0 to RBS in address-0X2D

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient A1 in I2C address-0X1E
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X20
- 5. Write top 8-bits of coefficient A2 in I2C address-0X21
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X22
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X23
- 8. Write top 8-bits of coefficient B1 in I2C address-0X24
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X25
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X26
- 11. Write top 8-bits of coefficient B2 in I2C address-0X27
- 12. Write middle 8-bits of coefficient B2 in I2C address-0X28
- 13. Write bottom 8-bits of coefficient B2 in I2C address-0X29
- 14. Write top 8-bits of coefficient A0 in I2C address-0X2A
- 15. Write middle 8-bits of coefficient A0 in I2C address-0X2B
- 16. Write bottom 8-bits of coefficient A0 in I2C address-0X2C
- 17. Write 1 to WA bit and write 1/0 to RBS in address-0X2D

Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

• User-defined equalizer

The AD87088 provides 30 parametric Equalizer (EQ). User can program suitable coefficients via I²C control interface to program the required audio band frequency response for every EQ. The transfer function

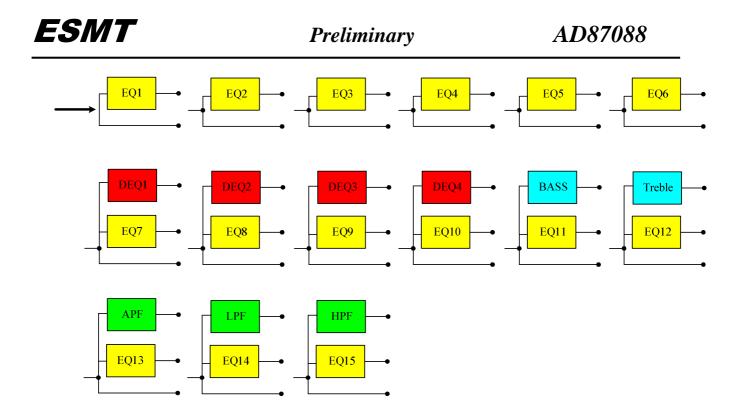
$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:

CHxEQyA0 = A0CHxEQyA1 = A1CHxEQyA2 = A2CHxEQyB1 = -B1CHxEQyB2 = -B2

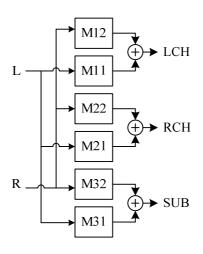
Where *x* and *y* represents the number of channel and the band number of EQ biquard.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.


• EQ arrangement

AD87088 provide 15 EQ per channel.

When, register with address-0X0C, bit-5, DEQE is set to high, the EQ-7, EQ-8, EQ9, and EQ10 will use another filter coefficient stored in used defined RAM 0X68~0X7B.


When, register with address-0X0C, bit-6, BTE is set to high, the EQ-11 and EQ-12 will perform as bass and treble respectively.

When three bands DRC enable, EQ-13, EQ-14, and EQ-15 will perform as APF, LPF, and HPF respectively.

• Mixer

The AD87088 provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

• Pre-scale

For each audio channel, AD87088 can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

Post-scale

The AD87088 provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

Power Clipping

The AD87088 provides power clipping function to avoid excessive signal that may destroy loud speaker. 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X55 of RAM bank 0. The following table shows the power clipping level's numerical representation.

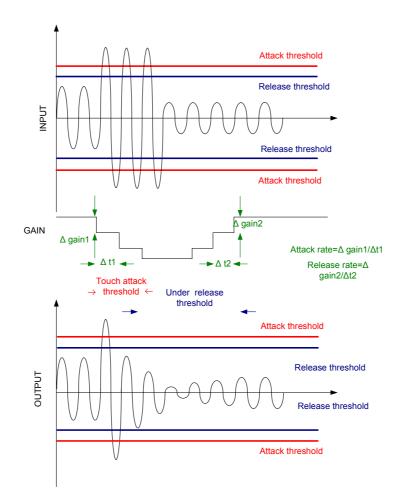
Max amplituda	dB	Linear	Decimal	Hex
Max amplitude			Decimal	(3.21 format)
VDDL/R	0	1	2097152	200000
VDDL/R*0.707	-3	0.707	1482686	169FBE
VDDL/R*0.5	-6	0.5	1048576	100000
VDDL/R*L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

Sample calculation for power clipping

• Attack threshold

The AD87088 provides DRC function. When the input RMS exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Four sets of DRC are provided. DRC1 is used for high frequency path in three bands DRC and used for L/R channel in one band DRC. DRC2 is used for low frequency path in three bands DRC. DRC3 is used for band pass frequency path in three bands DRC. DRC4 is used for the post DRC.

Attack threshold is defined by 24-bit presentation and is stored in RAM address 0X56, 0X58, 0X5A, 0X5C of RAM bank 0.


Release threshold

After AD87088 has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Release threshold is defined by 24-bit representation and is stored in RAM address 0X57, 0X59, 0X5B, and 0X5D of RAM bank 0. The following table shows the attack and release threshold's numerical representation.

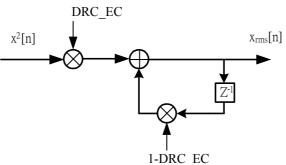
Dowor	dB	Linear	Decimal	Hex
Power			Decimal	(3.21 format)
(VDDL/R^2)/R	0	1	2097152	200000
(VDDL/R^2)/2R	-3	0.5	1048576	100000
(VDDL/R^2)/4R	-6	0.25	524288	80000
((VDDL/R^2)/R)*L	х	L=10 ^(x/10)	D=2097152xL	H=dec2hex(D)

Sample calculation for attack and release threshold

To best illustrate the power limit function, please refer to the following figure.

• Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X5E of RAM bank 0.


Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD87088 receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X5F of RAM bank 0. The following table shows the noise gate attack and release threshold level's numerical representation.

Input amplitude			Hex
(dB)	Linear	Decimal	(1.23 format)
0	1	8388607	7FFFF
-100	10 ⁻⁵	83	53
-110	10 ^{-5.5}	26	1A
x	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

Sample calculation for noise gate attack and release level

• DRC Energy Coefficient

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Four sets of energy coefficients are provided and used for respective DRC. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X60, 0X61, 0X62, and 0X63 of RAM bank 0. The following table shows the DRC energy coefficient numerical representation.

Sample calculation for DRC energy coefficient

	-			
DRC energy coefficient	dB	Linear	Decimal	Hex (1.23 format)
1	0	1	8388607	7FFFF
1/256	-48.2	1/256	32768	8000
1/1024	-60.2	1/1024	8192	2000
L	Х	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

The user defined RAM

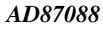
The contents of user defined RAM is represented in following table.

Address	NAME	Coefficient	Default
0x00	st o = =	CH1EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000
0x02	1 st SET	CH1EQ1B1	0x000000
0x03	Channel-1 EQ1	CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000
0x06	1 st SET	CH1EQ2A2	0x000000
0x07		CH1EQ2B1	0x000000
0x08	Channel-1 EQ2	CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000
0x0A	1 st SET Channel-1 EQ3	CH1EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000
0x0C		CH1EQ3B1	0x000000
0x0D		CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000
0x10	Astor	CH1EQ4A2	0x000000
0x11	1 st SET	CH1EQ4B1	0x000000
0x12	Channel-1 EQ4	CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000
0x15	1 st SET	CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000

Ram Bank selection = 1

0x18		CH1EQ5A0	0x200000
0x19		CH1EQ6A1	0x000000
0x1A	. st	CH1EQ6A2	0x000000
0x1B	1 st SET	CH1EQ6B1	0x000000
0x1C	Channel-1 EQ6	CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000
0x1E		CH1EQ7A1	0x000000
0x1F	1 st SET	CH1EQ7A2	0x000000
0x20	Channel-1 EQ7	CH1EQ7B1	0x000000
0x21		CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000
0x24	1 st SET	CH1EQ8A2	0x000000
0x25	_	CH1EQ8B1	0x000000
0x26	Channel-1 EQ8	CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000
0x28		CH1EQ9A1	0x000000
0x29	1 st SET Channel-1 EQ9	CH1EQ9A2	0x000000
0x2A		CH1EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000
0x2D		CH1EQ10A1	0x000000
0x2E	1 st SET	CH1EQ10A2	0x000000
0x2F	Channel-1 EQ10	CH1EQ10B1	0x000000
0x30		CH1EQ10B2	0x000000
0x31		CH1EQ10A0	0x200000
0x32		CH1EQ11A1	0x000000
0x33	1 st SET	CH1EQ11A2	0x000000
0x34	Channel-1 EQ11	CH1EQ11B1	0x000000
0x35		CH1EQ11B2	0x000000
0x36		CH1EQ11A0	0x200000
0x37		CH1EQ12A1	0x000000
0x38	1 st SET	CH1EQ12A2	0x000000
0x39	Channel-1 EQ12	CH1EQ12B1	0x000000
0x3A		CH1EQ12B2	0x000000
0x3B		CH1EQ12A0	0x200000
0x3C	1 st SET	CH1EQ13A1	0x000000

	1		1
0x3D	Channel-1 EQ13	CH1EQ13A2	0x000000
0x3E		CH1EQ13B1	0x000000
0x3F	_	CH1EQ13B2	0x000000
0x40		CH1EQ13A0	0x200000
0x41		CH1EQ14A1	0x000000
0x42	- 1 st SET	CH1EQ14A2	0x000000
0x43	Channel-1 EQ14	CH1EQ14B1	0x000000
0x44		CH1EQ14B2	0x000000
0x45		CH1EQ14A0	0x200000
0x46		CH1EQ15A1	0x000000
0x47	1 st SET	CH1EQ15A2	0x000000
0x48	_	CH1EQ15B1	0x000000
0x49	Channel-1 EQ15	CH1EQ15B2	0x000000
0x4A		CH1EQ15A0	0x200000
0x4B	Channel-1 Mixer1	M11	0x7FFFFF
0x4C	Channel-1 Mixer2	M12	0x000000
0x4D	Channel-1 Prescale	C1PRS	0x7FFFFF
0x4E	Channel-1 Postscale	C1POS	0x7FFFFF
0X4F	A0 of L channel SRS HPF	LSRSH_A0	C7B691
0X50	A1 of L channel SRS HPF	LSRSH_A1	38496E
0X51	B1 of L channel SRS HPF	LSRSH_B1	C46f8
0X52	A0 of L channel SRS LPF	LSRSL_A0	E81B9
0X53	A1 of L channel SRS LPF	LSRSL_A1	F22C12
0X54	B1 of L channel SRS LPF	LSRSL_B1	FCABB
0x55	CH1.2 Power Clipping	PC1	0x200000
0X56	CH1.2 DRC1 Attack threshold	DRC1_ATH	0x200000
0X57	CH1.2 DRC1 Release threshold	DRC1_RTH	0x80000
0X58	CH3.4 DRC2 Attack threshold	DRC2_ATH	0x200000


0X59	CH3.4 DRC2 Release threshold	DRC2_RTH	0x80000
0x5A	CH5.6 DRC3 Attack threshold	DRC3_ATH	0x200000
0x5B	CH5.6 DRC3 Release threshold	DRC3_RTH	0x80000
0x5C	CH7.8 DRC4 Attack threshold	DRC4_ATH	0x200000
0x5D	CH7.8 DRC4 Release threshold	DRC4_RTH	0x80000
0x5E	Noise Gate Attack Level	NGAL	0x00001A
0x5F	Noise Gate Release Level	NGRL	0x000053
0x60	DRC1 Energy Coefficient	DRC1_EC	0x8000
0X61	DRC2 Energy Coefficient	DRC2_EC	0x2000
0x62	DRC3 Energy Coefficient	DRC3_EC	0x8000
0X63	DRC4 Energy Coefficient	DRC4_EC	0x2000
0X64	DRC1 Power Meter	C1_RMS	
0X65	DRC3 Power Meter	C3_RMS	
0X66	DRC5 Power Meter	C5_RMS	
0X67	DRC7 Power Meter	C7_RMS	
0x68		CH1EQ1A1	0x000000
0x69	2 nd SET	CH1EQ1A2	0x000000
0x6A	Channel-1 EQ1	CH1EQ1B1	0x000000
0x6B	(DEQ1)	CH1EQ1B2	0x000000
0x6C		CH1EQ1A0	0x200000
0x6D		CH1EQ2A1	0x000000
0x6E	2 nd SET	CH1EQ2A2	0x000000
0x6F	Channel-1 EQ2	CH1EQ2B1	0x000000
0x70	(DEQ2)	CH1EQ2B2	0x000000
0x71		CH1EQ2A0	0x200000
0x72		CH1EQ3A1	0x000000
0x73	2 nd SET	CH1EQ3A2	0x000000
0x74	Channel-1 EQ3	CH1EQ3B1	0x000000
0x75	(DEQ3)	CH1EQ3B2	0x000000
0x76		CH1EQ3A0	0x200000
0x77	2 nd SET	CH1EQ4A1	0x000000

Elite Semiconductor Memory Technology Inc.

Publication Date: Feb. 2018 Revision: 0.3 77/84

Preliminary

0x78	Channel-1 EQ4	CH1EQ4A2	0x000000
0x79	(DEQ4)	CH1EQ4B1	0x000000
0x7A		CH1EQ4B2	0x000000
0x7B		CH1EQ4A0	0x200000

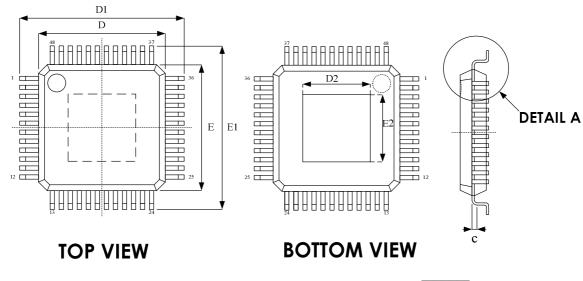
Ram Bank selection = 1

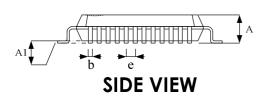
Address	NAME	Coefficient	Default
0x00		CH2EQ1A1	0x000000
0x01	1 st SET	CH2EQ1A2	0x000000
0x02	Channel-2 EQ1	CH2EQ1B1	0x000000
0x03	Channel-2 EQT	CH2EQ1B2	0x000000
0x04		CH2EQ1A0	0x200000
0x05		CH2EQ2A1	0x000000
0x06	1 st SET	CH2EQ2A2	0x000000
0x07		CH2EQ2B1	0x000000
0x08	Channel-2 EQ2	CH2EQ2B2	0x000000
0x09		CH2EQ2A0	0x200000
0x0A		CH2EQ3A1	0x000000
0x0B	ASLOCT	CH2EQ3A2	0x000000
0x0C	- 1 st SET - Channel-2 EQ3 -	CH2EQ3B1	0x000000
0x0D		CH2EQ3B2	0x000000
0x0E		CH2EQ3A0	0x200000
0x0F		CH2EQ4A1	0x000000
0x10	1 st SET Channel-2 EQ4	CH2EQ4A2	0x000000
0x11		CH2EQ4B1	0x000000
0x12		CH2EQ4B2	0x000000
0x13		CH2EQ4A0	0x200000
0x14		CH2EQ5A1	0x000000
0x15	1 st SET	CH2EQ5A2	0x000000
0x16		CH2EQ5B1	0x000000
0x17	Channel-2 EQ5	CH2EQ5B2	0x000000
0x18		CH2EQ5A0	0x200000
0x19		CH2EQ6A1	0x000000
0x1A	1 st OFT	CH2EQ6A2	0x000000
0x1B	1 st SET	CH2EQ6B1	0x000000
0x1C	Channel-2 EQ6	CH2EQ6B2	0x000000
0x1D		CH2EQ6A0	0x200000

Elite Semiconductor Memory Technology Inc.

Publication Date: Feb. 2018 Revision: 0.3 78/84

0x1E		CH2EQ7A1	0x000000
0x1F	1 st SET	CH2EQ7A2	0x000000
0x20		CH2EQ7B1	0x000000
0x21	Channel-2 EQ7	CH2EQ7B2	0x000000
0x22		CH2EQ7A0	0x200000
0x23		CH2EQ8A1	0x000000
0x24	1 st SET	CH2EQ8A2	0x000000
0x25		CH2EQ8B1	0x000000
0x26	Channel-2 EQ8	CH2EQ8B2	0x000000
0x27		CH2EQ8A0	0x200000
0x28		CH2EQ9A1	0x000000
0x29	1 st SET	CH2EQ9A2	0x000000
0x2A	Channel-2 EQ9	CH2EQ9B1	0x000000
0x2B	Channel-2 EQ9	CH2EQ9B2	0x000000
0x2C		CH2EQ9A0	0x200000
0x2D		CH2EQ10A1	0x000000
0x2E	1 st SET Channel-2 EQ10	CH2EQ10A2	0x000000
0x2F		CH2EQ10B1	0x000000
0x30		CH2EQ10B2	0x000000
0x31		CH2EQ10A0	0x200000
0x32		CH2EQ11A1	0x000000
0x33	1 st SET	CH2EQ11A2	0x000000
0x34	Channel-2 EQ11	CH2EQ11B1	0x000000
0x35		CH2EQ11B2	0x000000
0x36		CH2EQ11A0	0x200000
0x37		CH2EQ12A1	0x000000
0x38	1 st SET	CH2EQ12A2	0x000000
0x39	Channel-2 EQ12	CH2EQ12B1	0x000000
0x3A		CH2EQ12B2	0x000000
0x3B		CH2EQ12A0	0x200000
0x3C		CH2EQ13A1	0x000000
0x3D	1 st SET	CH2EQ13A2	0x000000
0x3E	Channel-2 EQ13	CH2EQ13B1	0x000000
0x3F		CH2EQ13B2	0x000000
0x40		CH2EQ13A0	0x200000
0x41	1 st SET	CH2EQ14A1	0x000000
0x42	Channel-2 EQ14	CH2EQ14A2	0x000000


0x43]	CH2EQ14B1	0x000000
0x44		CH2EQ14B2	0x000000
0x45		CH2EQ14A0	0x200000
0x46		CH2EQ15A1	0x000000
0x47		CH2EQ15A2	0x000000
0x48	1 st SET	CH2EQ15B1	0x000000
0x49	Channel-2 EQ15	CH2EQ15B2	0x000000
0x4A		CH2EQ15A0	0x200000
0x4B	Channel-2 Mixer1	M21	0x000000
0x4C	Channel-2 Mixer2	M22	0x7FFFFF
0x4D	Channel-2 Prescale	C2PRS	0x7FFFFF
0x4E	Channel-2 Postscale	C2POS	0x7FFFF
0X4F	A0 of R channel SRS HPF	RSRSH_A0	C7B691
0X50	A1 of R channel SRS HPF	RSRSH_A1	38496E
0X51	B1 of R channel SRS HPF	RSRSH_B1	C46f8
0X52	A0 of R channel SRS LPF	RSRSL_A0	E81B9
0X53	A1 of R channel SRS LPF	RSRSL_A1	F22C12
0X54	B1 of R channel SRS LPF	RSRSL_B1	FCABB
0x55	Reserved		
0X56	Reserved		
0X57	Reserved		
0X58	Reserved		
0X59	Reserved		
0x5A	Reserved		
0x5B	Reserved		
0x5C	Reserved		
0x5D	Reserved		
0x5E	Reserved		
0x5F	Reserved		
0x60	Reserved		
0X61	Reserved		



0x62	Reserved		
0X63	Reserved		
0X64	DRC2 Power Meter	C2_RMS	
0X65	DRC4 Power Meter	C4_RMS	
0X66	DRC6 Power Meter	C6_RMS	
0X67	DRC8 Power Meter	C8_RMS	
0x68		CH2EQ1A1	0x000000
0x69	2 nd SET	CH2EQ1A2	0x000000
0x6A	Channel-2 EQ1	CH2EQ1B1	0x000000
0x6B	(DEQ1)	CH2EQ1B2	0x000000
0x6C		CH2EQ1A0	0x200000
0x6D		CH2EQ2A1	0x000000
0x6E	2 nd SET	CH2EQ2A2	0x000000
0x6F	Channel-2 EQ2	CH2EQ2B1	0x000000
0x70	(DEQ2)	CH2EQ2B2	0x000000
0x71		CH2EQ2A0	0x200000
0x72		CH2EQ3A1	0x000000
0x73	2 nd SET	CH2EQ3A2	0x000000
0x74	Channel-2 EQ3	CH2EQ3B1	0x000000
0x75	(DEQ3)	CH2EQ3B2	0x000000
0x76		CH2EQ3A0	0x200000
0x77		CH2EQ4A1	0x000000
0x78	2 nd SET	CH2EQ4A2	0x000000
0x79	Channel-2 EQ4	CH2EQ4B1	0x000000
0x7A	(DEQ4)	CH2EQ4B2	0x000000
0x7B		CH2EQ4A0	0x200000

Package Dimensions

E-LQFP-48L (7mm x 7mm)

Courth of	Dimension in mm		
Symbol	Min	Max	
А		1.60	
A1	0.05	0.15	
b	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
e	0.50 BSC		
L	0.45	0.75	

Exposed pad				
	Dimension in mm			
	Min	Max		
D2	4.31	5.21		
E2	4.31	5.21		

Revision History

Revision	Date	Description
0.1	2018.01.10	Original.
0.2	2018.01.30	 Add Minimum Load Impedance for Line Driver and Driver Stage in Absolute Maximum Ratings and Recommended Operating Conditions. Modify Application Circuit Example for Stereo and Mono.
0.3	2018.02.13	 Add Symbol of R_{DS(ON)} in General Electrical Characteristics. Remove Bead in Application Circuit Example for Mono.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.